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ABSTRACT

Continuous processes, significant for real-time control of
embedded applications, are specified by partial differential
equations (PDEs) and systems with certain boundary conditions.
The paper develops techniques of computing structures design for
fast mass-parallel numerical solving of PDEs. We compose
specialized computing lattices based on the integer number
approximation specified with Sleptsov nets to be implemented as
dedicated hardware, which we prototype on FPGA. For mass-
parallel solving of PDEs, we employ ad-hoc finite-difference
schemes and iteration methods that allow us to recalculate the
lattice values in a single time cycle with appropriate accuracy
suitable for control of hypersonic objects and thermonuclear
reactions.
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1. INTRODUCTION

Solving a Partial Differential Equation (PDE) [1-3] represents the
basic technique of continuous system modeling in a wide range of
practical applications. Some specific forms of PDE allow us to
obtain analytical solutions, which simplify the process of their
application. In the general case, a given equation is resolved
numerically; either finite difference or finite element techniques
are applied. We focus on specific requirements and techniques for
fast solving of PDEs for control purposes in embedded
applications [4]. For example, control of airplane engine turbines
based on resolving gas dynamics and thermodynamics problems,
control of hypersonic vehicle trajectories, etc. For these
applications, iteration methods [2] yield utmost performance,
allowing us to apply directly a mass-parallel computing approach.

For embedded applications, we offer an approach that implements
a specialized hardware lattice on FPGA [5] via generating the
corresponding Verilog [6] code. For the lattice specification, we
apply a graphical language of Sleptsov nets [7,8]. We
considerably simplify the computing structure based on integer

number approximation of a computing lattice, converging with the
cellular automata techniques [9] for dedicated hardware
implementation, which we prototype on FPGA [5]. Obtained for
FPGA benchmarks, acknowledge the applicability of the approach
for fast control based on the ongoing process of numeral solving
boundary problems for PDE, where the boundary is actually
mapped into sensors and actuators.

2. NUMERICAL SOLVING PDE

Partial differential equations describe physical processes in
mechanics, hydrodynamics, acoustics, heat transfer, electricity,
magnetism, and other domains. When it is impossible to find
analytically the solution of these equations, numerical methods, in
particular, the finite difference method, are applied for their
solution [1-3]. The original partial derivative equation is reduced
to a system of difference equations, for which solution direct and
iterative methods are applied. In many cases, this is the only way
to find the solution of PDEs.

As a case study, we apply the finite difference method for solving
the Laplace equation based on the technique described in [2]
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where h > 0 is the discretization step.

With this substitution, we arrive at an equation that relates the
values of the desired function at separately taken points, which are
usually chosen so that they form a square mesh. We construct the
difference approximations for the case of a function of two
independent variables, u(x,y) on a rectangular mesh. Without
restricting the generality, we will assume that the change area of
the argument x is the segment 0 < x < 1, and the change area of
the argument y is the segment 0 <y <1. Let us divide the
segments 0 <x <1, 0<y<1 by points x; =ih(i=0,12..,N),
yi=jh(G=012..,N) into N equal parts of length h :% each.
The set of points (x;,y;) with coordinates x; = ih (i = 0,1,2...,N)
and y;j=jh(=012..,N) is called a mesh in the square 0 < x <
1,0 <y < 1. By u;; we denote the value of function u at the points
with coordinates (x;,y;):u;; = u(x;,y;). The value of the sought
function at the boundary nodes is determined for i =
012,..,N,j=12,.N—1 as



U0 = ¢(x;,0)
wn = @(x;,1) 2)
ug,; = @(0,¥;)
uy,; = @o(L,y))

Let us set the initial approximation ufoj) For internal points of the
domain, we choose the initial approximation arbitrarily; at the
boundary, the initial approximation is determined by expressions
(2). The next approximation is determined by the formula
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where s is the iteration number s=0, 1,2, ...,i =1,2,..,N — 1,
j=12..,N—-1.

The calculations (3) continue until the condition (4) is satisfied.
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As an example, we compute the solution of equation (1) in a
square with sides of unit length and the following boundary
conditions:

u(x,0) =1, 0<x<1
u(0,y) =0, 0<y<1
u(x,1) =0, 0<x<1
u(l,y) =1, 0<y<1

The results of calculations are shown in Fig. 1, from where it can
be concluded that the steady-state temperature distribution inside
the bar takes values between the minimum and maximum
temperature values at the boundary, which agrees with the
maximum principle satisfied by the solution of Laplace's equation.

I‘ 1.0
~ 0.8
- 0.6
- 0.4
~ 0.2
- 0.0

1.0
0.8
0.6

0.4

0.0
0.2

0.4 0.6 0.2

0.8
1.0 0.0
Fig. 1. The surface plot of the temperature distribution inside the beam

cross-section.

Using the technique described in [2], we conclude that the
solution obtained with (3) and (4) converges to the solution of a
problem (1), (2) at the rate of O(h*) at any initial approximation.
Given an accuracy of approximation &, we compute the mesh step

as h = /e and the mesh size as N = |1/h] to run the iteration
process.

3. SLEPTSOV NET COMPUTING

A Sleptsov net (SN) [7], where a transition fires in multiple
instances at a step, generalizes a Petri net [10], making it Turing-
complete [11] and running exponentially faster [7].

Carl Petri supplied a bipartite graph, Gill [12] was using for
modeling parallel computations, with dynamic elements, called
tokens [13], situated within vertices of the graph’s first part, called
places and depicted as circles or ovals. Vertices of the graph’s
second part, called transitions and depicted as squares or
rectangles, fire consuming tokens from their input places and
producing tokens within their output places. The discrete time
process of firing transitions represents the behavior of net. An
example of computing an expression on integer numbers applying
a Sleptsov-Salwicki transition firing rule [11] is shown in Fig. 2.

SN is a tuple N = (P, T, A, u°), where P and T are finite sets of
places and transitions, respectively, connected via arcs given by
the following mapping A: (P X T) U (T X P) - Z2°, where zero
value means the arc absence and nonzero value specifies the arc
multiplicity. The mapping u® — Z=°, gives the initial situation of
tokens within places called a marking.

Z=(2x+3y)4
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Fig. 2. Computing an expression z = (2x + 3y)/4 with an SN.

We use multisets [14] for SN behavior specification. At a step, a
maximal submultiset F' of the fireable transition multiset F fires.
The arc and the transition firing multiplicities are specified by
formulae (5) and (6), respectively.

Cp,t) =ul@)/Al,t) (5)
c) = Y (r;}g;o Clpt) (6)

Here, at the maximal multiset F' choice, we do not split the firing
multiplicity of a transition and observe obtaining of a nonnegative
next marking, specified by the SN state equation (7) for p € P,
teF.
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In (3), we consider a division operation as the whole division.
Thus, an SN implements directly such operations as addition,
subtraction, and also multiplication and division by a constant.

Note that within this paper, in contrast to a series of publications
on SN, we use the data-flow approach introduced in [7] for
solving the Laplace equation using a stencil with a von Neumann
neighborhood that provided the second degree of accuracy
compared to the fourth degree of (3), (4) using a stencil with a
Moore neighborhood. The Sleptsov-Salwicki rule (5)-(7) yields
the maximal parallelism for subsequent hardware implementation.
We avoid alternatives, composing structural conflict-free nets [15]
where F' = F.

Thus, in Fig. 2, we fire two transitions, t; and t,, at the first step,
transition t; in 3 instances and transition t, in 2 instances, then, at
step 2, transition t3 fires in 3 instances. The expression is
calculated in 2 steps: the multiplication by a constant is specified
by the multiplicity of the transition incoming arc, and the division
by a constant is implemented by the transition incoming arc.

We specity the corresponding transition firing sequence as

t7]
g = t3.
{fzz} :

In [7], SNs that implement basic arithmetic and logic operations
are composed; aspects of processing real numbers and other data
structures are studied in [16].

Sleptsov Net Computing (SNC) [17] resolves problems of modern
HPC. In this paper, we use SNC as the basic approach to represent
mass-parallel computations. We implement machines to run
programs drawn in the SN graphical language either in the form
of software as virtual machines [18] or in hardware that yields the
utmost performance as described in [19] and the present paper.

4. SN PROGRAMS FOR SOLVING PDE

For the most significant tasks of real-time embedded control, we
develop a model of computations that is subsequently
implemented in a semi-hardware form using FPGA [5,20], where
generated Verilog [6] code defines the specialized hardware. We
follow a traditional for embedded applications [4,5] way of
approximating real numbers as fixed-point numbers or, in even
more simplified form, as integer numbers, supposing an initial
scaling of numbers with respect to the working range and required
accuracy of the function approximation. For this purpose, a
UNIT _VALUE is selected; for instance, if a unit equals 0.001,
then all the values are expressed with respect to the chosen unit.
For using unsigned numbers, the corresponding shift of values is
applied; for instance, having a range from -10 to 10 and the above
unit, we implement a shift by 10, having the working range of
values from 0 to 20000.

Formal issues of convergence for nonnegative integer
approximation require further investigation, and with such an

approximation we can directly apply Sleptsov nets, which are easy
for hardware implementation [19]. Note that there is an intrinsic
connection of cellular automata (CA) [9] with the iteration
technique, especially when approximated with nonnegative
integer numbers. Indeed, the node value, together with a given
neighborhood and iteration formula, represents the CA rule [9].
Thus, we can apply CA theory [9] to study the convergence issues
[2]. An unchanged CA configuration directly represents
convergence, though some cycles of configurations with low
differences of the node values are possible to achieve as well.

In Fig.3, we present two different approaches to modeling
iteration processes by SNs; the first approach (Fig. 3a) is fast and
rough, though it yields simpler constructs; the second approach
(Fig. 3b) is more precise, though it runs three times slower and
contains more graphical elements. The node model represents a
clan (functional subnet) assuming applicability of the clan
composition technique for the model properties analysis.
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(a) one time cycle per iteration;
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(b) three time cycles per iteration.



Fig. 3. Node model for integer number approximation lattice for
embedded systems design.

Both nodes of Fig. 3, implement the iteration formula (3), the
node shown in Fig. 3b implements it directly, while the node
shown in Fig. 3a implements it with transformations (5) as a sum
of 8 addendums in the third line; an intermediate variant is
possible corresponding to the second line and requiring two time
cycles.
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For the node shown in Fig. 3a, a 5 X 5 lattice is composed in Fig.
4. It runs one iteration in one time cycle for the entire matrix of
values for the synchronous implementation of SN (Sleptsov-
Salwicki rule [11]). The lattice design is based on the
transformations of formula (3) represented with (8).

Each of eight addendums is implemented by a separate transition
of a neighboring node in Fig. 3a; separating division operations
affects the accuracy of computations, though leads to a one-time-
cycle implementation with enhanced performance. Actually, a
transition divides the node value by 5 or 20 and adds the obtained
values to the neighboring nodes; the division is implemented
using the corresponding weight of the transition incoming arc,
while the addition is implemented implicitly with a few incoming
arcs of the corresponding place. Actually, the boundary nodes are
not recalculated, while each internal node place has 8 incoming
arcs bringing the corresponding addendums of the final expression
in the transformations (24).

Fig. 4. An integer number approximation lattice solving PDE for

embedded systems design with a node shown in Fig. 3a.

We avoid conflicts to omit the choice of fireable multiset of SN
transitions and use formula (5) — (7) directly to simulate the SN
step. Actually, in Fig. 3a, we replace place u; j by a pair of places
u; ; and u; ;' (one place for each outgoing arc) to avoid conflicts,
directing the same incoming arcs to each of them that leads to a
rather tangled picture. For thorough implementations, we also
need to clear the division reminder from places u;; and u; j'.

If this fastest scheme is not suitable from the error of integer
division point of view, a three time-cycle implementation strictly
following formula (8) will be the best choice for nonnegative
integer approximation. The corresponding node model is
represented in Fig. 3b, yielding a lattice shown in Fig. 5.

Fig. 5. An integer number approximation lattice solving PDE for

embedded systems design with a node shown in Fig. 3b.

For formal specification of SN lattices, we actually apply the
multiset rewriting system based technique [14], which yields
expression (9) specifying the lattice shown in Fig. 4 with
duplicated places u; ; and u; ;" and expression (10) specifying the
borders to obtain a structural conflict-free net [15]. For each line,
a prefix gives the transition name; its input places are written to
the left of the arrow symbol; its input places are written to the
right of the arrow symbol. To avoid a bulky expression (10) with
a separate line for each border and each corner of the domain, we
suppose that the outgoing arcs, leading to borders, are omitted;
thus, we filter the right part of (10) with the following conditions:
i>0,i<N-1,j>0,j<N-1.
( div5;;:5 Uy = Uiy Uiy jy Ui o Ui, jo U jm1o U js U s Uy j1 )
div20;;:20 Ui = Upg jog, Uiy jog) Ui o1 Uimg jr1s Uit jo1 Wit joo Uit jor Uit o1
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For verification of SN programs, we apply system Tina [21],
which recently implements SNs and represents an IDE [18] for the
novel SNC paradigm of computations [17-19].

5. GENERATING VERILOG CODE ON SN
PROGRAM

The composed SN model represents the lattice specification for
further implementation of the approach [19] to compile an SN into
Verilog code [6] for its subsequent implementation on FPGA [5].
We employ either direct mapping of the lattice into explicit
Verilog statements or using loops as a template with respect to the
lattice size parameter N. The corresponding code snippet is shown
in Fig. 6. On the growing edge of the clock signal, we recalculate
the entire lattice for K iterations and then indicate with the built-in
LED array the result for an internal node. We run a single
iteration during a time cycle; the subsequent fine-tuning of
Verilog code supposes adjusting the iteration time with the device
clock with the purpose of running the maximal possible number of
iterations during a single time cycle. Since the conventional
division of integer numbers just omits the fractional part, we need
to provide a correction for better rounding. Because of this reason,
we compare the division reminder num%:20 with a given constant
ROUND_EDGE to add an extra unit. As a result of fine-tuning,
we can recommend using the constant ROUND EDGE values
from 10 to 12.

always @ (posedge sys_clk) begin
if (counter < 'K ) begin
for(i = 1; 1 < 'N-1; i = i+l) begin // iterate
for(j = 1; j < 'N-1; j = j+1) begin
cross=ul[i+1] [J]+ul[i-1][F]+uli] [J+1)+uli] [j-1];
diag=ul[i+1] [J+1]+ui+1][3-11+
uli-1] [3+1]+uli-1][j-1];

num=4*cross+diag;

ul[i] [§] = num/20+ ((num3%ROUND_EDGE)<11)?20:1;

for(i = 1; 1 < 'N-1; i = i+l) begin // u=ul;

for(j = 1; j < 'N-1; j = j+1) begin

uli] [j] = ul[i][3]
end
end
end
else
led = ~ u[2][2]([5:0];
end

Fig. 6. Listing of Verilog code snippet of the iteration (8) hardware
implementation.

We tested the node (Fig. 7b) and composed a lattice for N=5 that
recalculates the value of its internal part represented by a 3 X 3
lattice using the perimeter nodes as constant boundary conditions.
The lattice layout is shown in Fig. 7b and represents the
connection of 9 nodes. Here we do not rearrange the automatically
obtained layout; though, when optimizing it for production, the

lattice structure will be imposed, providing the minimal wire
(connections) length and the minimal number of intersections to
trace on additional layers.

An adjusted constant number of iterations, for a certain range of
considered magnitudes, represents a good compromise with
respect to the limited resources of embedded applications. A
layout of a node, obtained as a result of Verilog code processing,
is shown in Fig. 7; here we use neighboring node values according
to the names specified in Figs. 3 — 5; it just describes the data flow

of formula (3), we use a 16 bits unsigned integer approximation.

a) layout of a node obtained on Verilog code (automatic);

i

b) layout of lattice with node substitution (automatic).

Fig. 7. Layout of 5x5 lattice with constant values on borders.

6. BENCHMARKS FOR FPGA

For preliminary benchmarks, we were using the Tang Nano 9k
FPGA operated by Gowin FPGA Designer [19]. The dependence
of solution time on the lattice size for required precision is shown
in Fig. 8. For 50MHz FPGA clock, we run an iteration in about
20 ns; thus, we calculate about K=50 iterations in 1 us that
provides a rather good approximation of the optimal control
specified by PDE (a system of PDEs). Benchmarks obtained for
the specified FPGA completely correspond to simplified
evaluations by multiplying the number of iterations by the
device’s basic time cycle. Modern advanced FPGAs work on
frequencies higher that 1 GHz, which allows us to run K=7000
iterations in 1us or to have a nanosecond reaction with fewer
numbers of iterations.

One could think that the chosen number of steps within the
figures, N =4 (N + 1 = 5 dots) serves for illustrative purposes
only, though we will show that it provides rather good
approximation as well. Having a step 71=1/4=0.25, the scheme (3),
(4) provides the accuracy of approximation & = h* = 0.25% =
0.004, using the same value in formula (9), that requires about 20



iterations to run. Tang Nano 9k FPGA, having a modest cost of
some ten pounds, can handle a mesh of N = 10, that provides
theoretical accuracy of computations of about 0.0001.
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Fig. 8. Dependence of the solution time (number of iterations) on the

actual accuracy of approximation.

For computations represented with Fig. 7, we were using fine-
tuning which includes, for the embedded implementation,
adjusting the following set of parameters: N, UNIT VALUE, K,
and ROUND_EDGE. We are reaching the required accuracy by
increasing N and decreasing UNIT VALUE, which requires
increasing K to achieve the theoretical accuracy, though because
of the rounding error accumulation, it shifts the result with respect
to the precise solution that is adjusted by the appropriate
ROUND_EDGE choice.

As for the discussion of the presented approach prospects, we
would like to note that in the present paper, we consider (for the
case study) constant boundary conditions and, as a goal, the
convergence to an unmovable or pulsing with low error
configuration of the nonnegative integer approximation (a cellular
automaton). For real-life embedded applications, extended
systems are of certain interest where sensors are attached in the
form of changing border conditions, and the goal values for the
optimal control are taken from certain specified locations of the
lattice. In this case, we are not interested in halting the computing
structure but keeping it running and processing possible updates
of sensors. For control systems that change time scale and have
prolonged idling periods, switching to energy-saving modes of
functioning is possible, when achieving good convergence, to
awake on a change of sensor inputs.

7. CONCLUSIONS

In this paper, we have applied infinite Sleptsov (generalized Petri)
nets for computing structure design aimed at fast mass-parallel
numerical solving of practically significant problems specified by
PDE or systems of PDE focusing on the domain of embedded
applications with specialized hardware prototyped with FPGA.

We start with a given PDE or a system of PDEs and boundary
conditions, then apply finite difference methods using a mesh of
appropriate shape for its numerical solution with required
accuracy (error). For an efficient solution, in an ideal case, the
task spatial structure should be directly mapped into the
corresponding computing-communication structure, which is
possible for dedicated hardware implementation or its prototyping
with FPGA for embedded control applications. We focus on the
connection mesh obtained using Moore’s [9] for considerably
better approximation (as a fourth degree compared to the second
degree depending on the finite difference mesh step size).

Composing SN data-flow programs, we considered the integer
number approximation of the iteration technique that represents,
in essence, a cellular automaton approach. SN graphical language
has been employed as an intermediate construct to generate
Verilog code for dedicated hardware implementations or
prototyping on FPGA. For the FPGA implementation,
benchmarks and prospects of application for fast process control
have been discussed. It concerns plane and rocket engines,
(thermo) nuclear power stations, the trajectory of hypersonic
moving objects, etc.
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