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ABSTRACT 

Continuous processes, significant for real-time control of 
embedded applications, are specified by partial differential 
equations (PDEs) and systems with certain boundary conditions. 
The paper develops techniques of computing structures design for 
fast mass-parallel numerical solving of PDEs. We compose 
specialized computing lattices based on the integer number 
approximation specified with Sleptsov nets to be implemented as 
dedicated hardware, which we prototype on FPGA. For mass-
parallel solving of PDEs, we employ ad-hoc finite-difference 
schemes and iteration methods that allow us to recalculate the 
lattice values in a single time cycle with appropriate accuracy 
suitable for control of hypersonic objects and thermonuclear 
reactions.   

CCS Concepts 
• Computing methodologies ➝ Concurrent computing 
methodologies   • Computer systems organization ➝ 

Embedded and cyber-physical systems • Mathematics of 
computing ➝ Continuous mathematics.  
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1. INTRODUCTION 

Solving a Partial Differential Equation (PDE) [1-3] represents the 
basic technique of continuous system modeling in a wide range of 
practical applications. Some specific forms of PDE allow us to 
obtain analytical solutions, which simplify the process of their 
application. In the general case, a given equation is resolved 
numerically; either finite difference or finite element techniques 
are applied. We focus on specific requirements and techniques for 
fast solving of PDEs for control purposes in embedded 
applications [4]. For example, control of airplane engine turbines 
based on resolving gas dynamics and thermodynamics problems, 
control of hypersonic vehicle trajectories, etc. For these 
applications, iteration methods [2] yield utmost performance, 
allowing us to apply directly a mass-parallel computing approach.  

For embedded applications, we offer an approach that implements 
a specialized hardware lattice on FPGA [5] via generating the 
corresponding Verilog [6] code. For the lattice specification, we 
apply a graphical language of Sleptsov nets [7,8]. We 
considerably simplify the computing structure based on integer 

number approximation of a computing lattice, converging with the 
cellular automata techniques [9] for dedicated hardware 
implementation, which we prototype on FPGA [5]. Obtained for 
FPGA benchmarks, acknowledge the applicability of the approach 
for fast control based on the ongoing process of numeral solving 
boundary problems for PDE, where the boundary is actually 
mapped into sensors and actuators. 

2. NUMERICAL SOLVING PDE  

Partial differential equations describe physical processes in 
mechanics, hydrodynamics, acoustics, heat transfer, electricity, 
magnetism, and other domains. When it is impossible to find 
analytically the solution of these equations, numerical methods, in 
particular, the finite difference method, are applied for their 
solution [1-3]. The original partial derivative equation is reduced 
to a system of difference equations, for which solution direct and 
iterative methods are applied. In many cases, this is the only way 
to find the solution of PDEs.  

As a case study, we apply the finite difference method for solving 
the Laplace equation based on the technique described in [2] 

 డమ௨(௫,௬)

డ௫మ
+

డమ௨(௫,௬)

డ௬మ
= 0, (1) 

which is replaced by the following difference relation  

𝑢(𝑥 − ℎ, 𝑦) − 2𝑢(𝑥, 𝑦) + 𝑢(𝑥 + ℎ, 𝑦)

ℎଶ
+

𝑢(𝑥, 𝑦 − ℎ) − 2𝑢(𝑥, 𝑦) + 𝑢(𝑥, 𝑦 + ℎ)

ℎଶ
, 

where ℎ > 0 is the discretization step. 

With this substitution, we arrive at an equation that relates the 
values of the desired function at separately taken points, which are 
usually chosen so that they form a square mesh. We construct the 
difference approximations for the case of a function of two 
independent variables, 𝑢(𝑥, 𝑦) on a rectangular mesh. Without 
restricting the generality, we will assume that the change area of 
the argument 𝑥 is the segment 0 ≤ 𝑥 ≤ 1, and the change area of 
the argument 𝑦 is the segment 0 ≤ 𝑦 ≤ 1. Let us divide the 
segments 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1 by points  𝑥௜ = 𝑖ℎ (𝑖 = 0,1,2 … , 𝑁), 

𝑦௝ = 𝑗ℎ (𝑗 = 0,1,2, … , 𝑁) into N equal parts of length ℎ =
ଵ

ே
 each. 

The set of points (𝑥௜ , 𝑦௝) with coordinates 𝑥௜ = 𝑖ℎ (𝑖 = 0,1,2 … , 𝑁) 
and 𝑦௝ = 𝑗ℎ (𝑗 = 0,1,2, … , 𝑁) is called a mesh in the square 0 ≤ 𝑥 ≤

1, 0 ≤ 𝑦 ≤ 1. By 𝑢௜,௝ we denote the value of function u at the points 
with coordinates (𝑥௜, 𝑦௝): 𝑢௜,௝ = 𝑢൫𝑥௜ , 𝑦௝൯. The value of the sought 

function at the boundary nodes is determined for 𝑖 =

0,1,2, … , 𝑁, 𝑗 = 1,2, … 𝑁 − 1  as 



  𝑢௜,଴ = 𝜑(𝑥௜ , 0)   
 𝑢௜,ே = 𝜑(𝑥௜ , 1)   
 𝑢଴,௝ = 𝜑(0, 𝑦௝)    
 𝑢ே,௝ = 𝜑(1, 𝑦௝)    

(2) 

Let us set the initial approximation 𝑢௜,௝
(଴). For internal points of the 

domain, we choose the initial approximation arbitrarily; at the 
boundary, the initial approximation is determined by expressions 
(2). The next approximation is determined by the formula 

𝑢௜,௝
(௦ାଵ)

=
ସቀ௨೔,ೕషభ

(ೞ)
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(ೞ)
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(ೞ)
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(ೞ)
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(ೞ)
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(ೞ)
ା௨೔షభ,ೕషభ

(ೞ)
ା௨೔శభ,ೕషభ

(ೞ)

ଶ଴
,      (3) 

where s is the iteration number s=0, 1, 2, …, 𝑖 = 1, 2, … , 𝑁 − 1,  

𝑗 = 1, 2, … , 𝑁 − 1. 

The calculations (3) continue until the condition (4) is satisfied. 

max
௜,௝

ቚ𝑢௜,௝
(௦ାଵ)

− 𝑢௜,௝
(௦)

ቚ < 𝜀.                         (4) 

As an example, we compute the solution of equation (1) in a 
square with sides of unit length and the following boundary 
conditions: 

𝑢(𝑥, 0) = 1, 0 ≤ 𝑥 ≤ 1 
𝑢(0, 𝑦) = 0, 0 < 𝑦 ≤ 1 
𝑢(𝑥, 1) = 0, 0 ≤ 𝑥 < 1 
𝑢(1, 𝑦) = 1, 0 ≤ 𝑦 ≤ 1 

The results of calculations are shown in Fig. 1, from where it can 
be concluded that the steady-state temperature distribution inside 
the bar takes values between the minimum and maximum 
temperature values at the boundary, which agrees with the 
maximum principle satisfied by the solution of Laplace's equation. 

 

Fig. 1. The surface plot of the temperature distribution inside the beam 

cross-section. 

Using the technique described in [2], we conclude that the 
solution obtained with (3) and (4) converges to the solution of a 
problem (1), (2) at the rate of 𝑂(ℎସ) at any initial approximation. 
Given an accuracy of approximation 𝜀, we compute the mesh step 

as ℎ = √𝜀ర   and the mesh size as 𝑁 = ⌊1/ℎ⌋ to run the iteration 
process. 

3. SLEPTSOV NET COMPUTING 

A Sleptsov net (SN) [7], where a transition fires in multiple 
instances at a step, generalizes a Petri net [10], making it Turing-
complete [11] and running exponentially faster [7].  

Carl Petri supplied a bipartite graph, Gill [12] was using for 
modeling parallel computations, with dynamic elements, called 
tokens [13], situated within vertices of the graph’s first part, called 
places and depicted as circles or ovals. Vertices of the graph’s 
second part, called transitions and depicted as squares or 
rectangles, fire consuming tokens from their input places and 
producing tokens within their output places. The discrete time 
process of firing transitions represents the behavior of net. An 
example of computing an expression on integer numbers applying 
a Sleptsov-Salwicki transition firing rule [11] is shown in Fig. 2.  

SN is a tuple 𝑁 = (𝑃, 𝑇, 𝐴, 𝜇଴), where 𝑃 and 𝑇 are finite sets of 
places and transitions, respectively, connected via arcs given by 
the following mapping 𝐴: (𝑃 × 𝑇) ∪ (𝑇 × 𝑃) → ℤஹ଴, where zero 
value means the arc absence and nonzero value specifies the arc 
multiplicity. The mapping 𝜇଴ → ℤஹ଴, gives the initial situation of 
tokens within places called a marking.  

 

Fig. 2. Computing an expression 𝑧 = (2𝑥 + 3𝑦)/4 with an SN. 

We use multisets [14] for SN behavior specification. At a step, a 
maximal submultiset 𝐹′ of the fireable transition multiset 𝐹 fires. 
The arc and the transition firing multiplicities are specified by 
formulae (5) and (6), respectively. 

 𝐶(𝑝, 𝑡) = 𝜇(𝑝)/𝐴(𝑝, 𝑡) (5) 

 𝐶(𝑡) = min
஺(௣,௧)வ଴

𝐶(𝑝, 𝑡) (6) 

Here, at the maximal multiset 𝐹′ choice, we do not split the firing 
multiplicity of a transition and observe obtaining of a nonnegative 
next marking, specified by the SN state equation (7) for 𝑝 ∈ 𝑃, 
𝑡 ∈ 𝐹′. 



𝜇(𝑝)௞ାଵ = 𝜇(𝑝)௞ − ෍ 𝐶(𝑡) ∙ 𝐴(𝑝, 𝑡)

஺(௣,௧)வ଴

+ ෍ 𝐶(𝑡) ∙ 𝐴(𝑝, 𝑡)

஺(௧,௣)வ଴

 (7) 

In (3), we consider a division operation as the whole division. 
Thus, an SN implements directly such operations as addition, 
subtraction, and also multiplication and division by a constant. 

Note that within this paper, in contrast to a series of publications 
on SN, we use the data-flow approach introduced in [7] for 
solving the Laplace equation using a stencil with a von Neumann 
neighborhood that provided the second degree of accuracy 
compared to the fourth degree of (3), (4) using a stencil with a 
Moore neighborhood. The Sleptsov-Salwicki rule (5)-(7) yields 
the maximal parallelism for subsequent hardware implementation. 
We avoid alternatives, composing structural conflict-free nets [15] 
where 𝐹ᇱ = 𝐹. 

Thus, in Fig. 2, we fire two transitions, 𝑡ଵ and 𝑡ଶ, at the first step, 
transition 𝑡ଵ in 3 instances and transition 𝑡ଶ in 2 instances, then, at 
step 2, transition 𝑡ଷ fires in 3 instances. The expression is 
calculated in 2 steps: the multiplication by a constant is specified 
by the multiplicity of the transition incoming arc, and the division 
by a constant is implemented by the transition incoming arc.  

We specify the corresponding transition firing sequence as 

𝜎 = ቊ
𝑡ଵ

ଷ

𝑡ଶ
ଶ

ቋ 𝑡ଷ
ଷ. 

In [7], SNs that implement basic arithmetic and logic operations 
are composed; aspects of processing real numbers and other data 
structures are studied in [16].  

Sleptsov Net Computing (SNC) [17] resolves problems of modern 
HPC. In this paper, we use SNC as the basic approach to represent 
mass-parallel computations. We implement machines to run 
programs drawn in the SN graphical language either in the form 
of software as virtual machines [18] or in hardware that yields the 
utmost performance as described in [19] and the present paper.  

4. SN PROGRAMS FOR SOLVING PDE 

For the most significant tasks of real-time embedded control, we 
develop a model of computations that is subsequently 
implemented in a semi-hardware form using FPGA [5,20], where 
generated Verilog [6] code defines the specialized hardware. We 
follow a traditional for embedded applications [4,5] way of 
approximating real numbers as fixed-point numbers or, in even 
more simplified form, as integer numbers, supposing an initial 
scaling of numbers with respect to the working range and required 
accuracy of the function approximation. For this purpose, a 
UNIT_VALUE is selected; for instance, if a unit equals 0.001, 
then all the values are expressed with respect to the chosen unit. 
For using unsigned numbers, the corresponding shift of values is 
applied; for instance, having a range from -10 to 10 and the above 
unit, we implement a shift by 10, having the working range of 
values from 0 to 20000.  

Formal issues of convergence for nonnegative integer 
approximation require further investigation, and with such an 

approximation we can directly apply Sleptsov nets, which are easy 
for hardware implementation [19]. Note that there is an intrinsic 
connection of cellular automata (CA) [9] with the iteration 
technique, especially when approximated with nonnegative 
integer numbers. Indeed, the node value, together with a given 
neighborhood and iteration formula, represents the CA rule [9]. 
Thus, we can apply CA theory [9] to study the convergence issues 
[2]. An unchanged CA configuration directly represents 
convergence, though some cycles of configurations with low 
differences of the node values are possible to achieve as well. 

In Fig. 3, we present two different approaches to modeling 
iteration processes by SNs; the first approach (Fig. 3a) is fast and 
rough, though it yields simpler constructs; the second approach 
(Fig. 3b) is more precise, though it runs three times slower and 
contains more graphical elements. The node model represents a 
clan (functional subnet) assuming applicability of the clan 
composition technique for the model properties analysis.  

 

(a) one time cycle per iteration; 

 

(b) three time cycles per iteration. 



Fig. 3. Node model for integer number approximation lattice for 
embedded systems design. 

Both nodes of Fig. 3, implement the iteration formula (3), the 
node shown in Fig. 3b implements it directly, while the node 
shown in Fig. 3a implements it with transformations (5) as a sum 
of 8 addendums in the third line; an intermediate variant is 
possible corresponding to the second line and requiring two time 
cycles.  

𝑢௜,௝
(௦ାଵ)
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4൫𝑢௜,௝ିଵ
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+

௨೔శభ,ೕషభ
(ೞ)
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.         (8) 

For the node shown in Fig. 3a, a 5 × 5 lattice is composed in Fig. 
4. It runs one iteration in one time cycle for the entire matrix of 
values for the synchronous implementation of SN (Sleptsov-
Salwicki rule [11]). The lattice design is based on the 
transformations of formula (3) represented with (8). 

Each of eight addendums is implemented by a separate transition 
of a neighboring node in Fig. 3a; separating division operations 
affects the accuracy of computations, though leads to a one-time-
cycle implementation with enhanced performance. Actually, a 
transition divides the node value by 5 or 20 and adds the obtained 
values to the neighboring nodes; the division is implemented 
using the corresponding weight of the transition incoming arc, 
while the addition is implemented implicitly with a few incoming 
arcs of the corresponding place. Actually, the boundary nodes are 
not recalculated, while each internal node place has 8 incoming 
arcs bringing the corresponding addendums of the final expression 
in the transformations (24).  

 
Fig. 4. An integer number approximation lattice solving PDE for 

embedded systems design with a node shown in Fig. 3a. 

We avoid conflicts to omit the choice of fireable multiset of SN 
transitions and use formula (5) – (7) directly to simulate the SN 
step. Actually, in Fig. 3a, we replace place 𝑢௜,௝ by a pair of places 
𝑢௜,௝ and 𝑢௜,௝′ (one place for each outgoing arc) to avoid conflicts, 

directing the same incoming arcs to each of them that leads to a 
rather tangled picture. For thorough implementations, we also 
need to clear the division reminder from places 𝑢௜,௝ and 𝑢௜,௝′. 

If this fastest scheme is not suitable from the error of integer 
division point of view, a three time-cycle implementation strictly 
following formula (8) will be the best choice for nonnegative 
integer approximation. The corresponding node model is 
represented in Fig. 3b, yielding a lattice shown in Fig. 5. 

 
Fig. 5. An integer number approximation lattice solving PDE for 

embedded systems design with a node shown in Fig. 3b. 

For formal specification of SN lattices, we actually apply the 
multiset rewriting system based technique [14], which yields 
expression (9) specifying the lattice shown in Fig. 4 with 
duplicated places 𝑢௜,௝ and 𝑢௜,௝′ and expression (10) specifying the 

borders to obtain a structural conflict-free net [15]. For each line, 
a prefix gives the transition name; its input places are written to 
the left of the arrow symbol; its input places are written to the 
right of the arrow symbol. To avoid a bulky expression (10) with 
a separate line for each border and each corner of the domain, we 
suppose that the outgoing arcs, leading to borders, are omitted; 
thus, we filter the right part of (10) with the following conditions: 
𝑖 > 0, 𝑖 < 𝑁 − 1, 𝑗 > 0, 𝑗 < 𝑁 − 1.  

ቆ
𝑑𝑖𝑣5௜,௝: 5 ∙ 𝑢௜,௝ → 𝑢௜ିଵ,௝ , 𝑢௜ିଵ,௝

ᇱ , 𝑢௜ାଵ,௝ , 𝑢௜ାଵ,௝
ᇱ , 𝑢௜,௝ିଵ, 𝑢௜,௝ିଵ

ᇱ , 𝑢௜,௝ାଵ, 𝑢௜,௝ାଵ′

𝑑𝑖𝑣20௜,௝: 20 ∙ 𝑢௜,௝
ᇱ → 𝑢௜ିଵ,௝ିଵ, 𝑢௜ିଵ,௝ିଵ

ᇱ , 𝑢௜ିଵ,௝ାଵ, 𝑢௜ିଵ,௝ାଵ
ᇱ , 𝑢௜ାଵ,௝ିଵ , 𝑢௜ାଵ,௝ିଵ

ᇱ , 𝑢௜ାଵ,௝ାଵ, 𝑢௜ାଵ,௝ାଵ′
ቇ  

      1 ≤ 𝑖 ≤ 𝑁 − 1, 1 ≤ 𝑗 ≤ 𝑁 − 1                                                                                                   (9) 

ቆ
𝑑𝑖𝑣5௜,௝: 5 ∙ 𝑢௜,௝ → 5 ∙ 𝑢௜,௝, 𝑢௜ିଵ,௝ , 𝑢௜ାଵ,௝ , 𝑢௜,௝ିଵ, 𝑢௜,௝ାଵ ,

𝑑𝑖𝑣20௜,௝: 20 ∙ 𝑢௜,௝
ᇱ → 20 ∙ 𝑢௜,௝′, 𝑢௜ିଵ,௝ିଵ

ᇱ , 𝑢௜ିଵ,௝ାଵ
ᇱ , 𝑢௜ାଵ,௝ିଵ

ᇱ , 𝑢௜ାଵ,௝ାଵ′
ቇ      

      𝑖 = 0, 𝑖 = 𝑁 − 1, 𝑗 = 0, 𝑗 = 𝑁 − 1                                                                                          (10) 



For verification of SN programs, we apply system Tina [21], 
which recently implements SNs and represents an IDE [18] for the 
novel SNC paradigm of computations [17-19]. 

5. GENERATING VERILOG CODE ON SN 
PROGRAM 
The composed SN model represents the lattice specification for 
further implementation of the approach [19] to compile an SN into 
Verilog code [6] for its subsequent implementation on FPGA [5]. 
We employ either direct mapping of the lattice into explicit 
Verilog statements or using loops as a template with respect to the 
lattice size parameter N. The corresponding code snippet is shown 
in Fig. 6. On the growing edge of the clock signal, we recalculate 
the entire lattice for K iterations and then indicate with the built-in 
LED array the result for an internal node. We run a single 
iteration during a time cycle; the subsequent fine-tuning of 
Verilog code supposes adjusting the iteration time with the device 
clock with the purpose of running the maximal possible number of 
iterations during a single time cycle. Since the conventional 
division of integer numbers just omits the fractional part, we need 
to provide a correction for better rounding. Because of this reason, 
we compare the division reminder num%20 with a given constant 
ROUND_EDGE to add an extra unit. As a result of fine-tuning, 
we can recommend using the constant ROUND_EDGE values 
from 10 to 12.  

always @(posedge sys_clk) begin 

     if (counter < `K ) begin 

        for(i = 1; i < `N-1; i = i+1) begin // iterate 

          for(j = 1; j < `N-1; j = j+1) begin  

            cross=u[i+1][j]+u[i-1][j]+u[i][j+1]+u[i][j-1]; 

            diag=u[i+1][j+1]+u[i+1][j-1]+ 

                             u[i-1][j+1]+u[i-1][j-1]; 

            num=4*cross+diag; 

            u1[i][j] = num/20+((num%ROUND_EDGE)<11)?0:1; 

          end 

        end 

        for(i = 1; i < `N-1; i = i+1) begin // u=u1; 

          for(j = 1; j < `N-1; j = j+1) begin  

            u[i][j] = u1[i][j]; 

          end 

        end 

       

     end          

     else 

       led = ~ u[2][2][5:0];   

     end 

Fig. 6. Listing of Verilog code snippet of the iteration (8) hardware 

implementation. 

We tested the node (Fig. 7b) and composed a lattice for N=5 that 
recalculates the value of its internal part represented by a 3 × 3 
lattice using the perimeter nodes as constant boundary conditions. 
The lattice layout is shown in Fig. 7b and represents the 
connection of 9 nodes. Here we do not rearrange the automatically 
obtained layout; though, when optimizing it for production, the 

lattice structure will be imposed, providing the minimal wire 
(connections) length and the minimal number of intersections to 
trace on additional layers. 

An adjusted constant number of iterations, for a certain range of 
considered magnitudes, represents a good compromise with 
respect to the limited resources of embedded applications. A 
layout of a node, obtained as a result of Verilog code processing, 
is shown in Fig. 7; here we use neighboring node values according 
to the names specified in Figs. 3 – 5; it just describes the data flow 
of formula (3), we use a 16 bits unsigned integer approximation.   

  

 
a) layout of a node obtained on Verilog code (automatic); 

 
b) layout of lattice with node substitution (automatic). 

Fig. 7. Layout of 5x5 lattice with constant values on borders. 

6. BENCHMARKS FOR FPGA  
For preliminary benchmarks, we were using the Tang Nano 9k 
FPGA operated by Gowin FPGA Designer [19]. The dependence 
of solution time on the lattice size for required precision is shown 
in Fig. 8. For 50MHz FPGA clock, we run an iteration in about 
20 ns; thus, we calculate about K=50 iterations in 1 us that 
provides a rather good approximation of the optimal control 
specified by PDE (a system of PDEs). Benchmarks obtained for 
the specified FPGA completely correspond to simplified 
evaluations by multiplying the number of iterations by the 
device’s basic time cycle. Modern advanced FPGAs work on 
frequencies higher that 1 GHz, which allows us to run K=1000 
iterations in 1 us or to have a nanosecond reaction with fewer 
numbers of iterations.  

One could think that the chosen number of steps within the 
figures, 𝑁 = 4 ( 𝑁 + 1 = 5 dots) serves for illustrative purposes 
only, though we will show that it provides rather good 
approximation as well. Having a step h=1/4=0.25, the scheme (3), 
(4) provides the accuracy of approximation 𝜀 ≈ ℎସ = 0.25ସ ≈

0.004, using the same value in formula (9), that requires about 20 



iterations to run. Tang Nano 9k FPGA, having a modest cost of 
some ten pounds, can handle a mesh of 𝑁 = 10, that provides 
theoretical accuracy of computations of about 0.0001.  

 
a) real numbers; 

 
b) integer approximation on FPGA. 

Fig. 8. Dependence of the solution time (number of iterations) on the 

actual accuracy of approximation. 

For computations represented with Fig. 7, we were using fine-
tuning which includes, for the embedded implementation, 
adjusting the following set of parameters: N, UNIT_VALUE, K, 
and ROUND_EDGE. We are reaching the required accuracy by 
increasing N and decreasing UNIT_VALUE, which requires 
increasing K to achieve the theoretical accuracy, though because 
of the rounding error accumulation, it shifts the result with respect 
to the precise solution that is adjusted by the appropriate 
ROUND_EDGE choice.  

As for the discussion of the presented approach prospects, we 
would like to note that in the present paper, we consider (for the 
case study) constant boundary conditions and, as a goal, the 
convergence to an unmovable or pulsing with low error 
configuration of the nonnegative integer approximation (a cellular 
automaton). For real-life embedded applications, extended 
systems are of certain interest where sensors are attached in the 
form of changing border conditions, and the goal values for the 
optimal control are taken from certain specified locations of the 
lattice. In this case, we are not interested in halting the computing 
structure but keeping it running and processing possible updates 
of sensors. For control systems that change time scale and have 
prolonged idling periods, switching to energy-saving modes of 
functioning is possible, when achieving good convergence, to 
awake on a change of sensor inputs.  

7. CONCLUSIONS 
In this paper, we have applied infinite Sleptsov (generalized Petri) 
nets for computing structure design aimed at fast mass-parallel 
numerical solving of practically significant problems specified by 
PDE or systems of PDE focusing on the domain of embedded 
applications with specialized hardware prototyped with FPGA.  

We start with a given PDE or a system of PDEs and boundary 
conditions, then apply finite difference methods using a mesh of 
appropriate shape for its numerical solution with required 
accuracy (error). For an efficient solution, in an ideal case, the 
task spatial structure should be directly mapped into the 
corresponding computing-communication structure, which is 
possible for dedicated hardware implementation or its prototyping 
with FPGA for embedded control applications. We focus on the 
connection mesh obtained using Moore’s [9] for considerably 
better approximation (as a fourth degree compared to the second 
degree depending on the finite difference mesh step size). 

Composing SN data-flow programs, we considered the integer 
number approximation of the iteration technique that represents, 
in essence, a cellular automaton approach. SN graphical language 
has been employed as an intermediate construct to generate 
Verilog code for dedicated hardware implementations or 
prototyping on FPGA. For the FPGA implementation, 
benchmarks and prospects of application for fast process control 
have been discussed. It concerns plane and rocket engines, 
(thermo) nuclear power stations, the trajectory of hypersonic 
moving objects, etc.  
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