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ABSTRACT 

Real-time embedded applications are normally viewed as 
continuous processes and are often specified using Partial 
Differential Equations (PDEs) and with certain boundary 
conditions. In this paper we present techniques for fast mass-
parallel numerical solving of PDEs. We compose specialized 
lattices based on the integer number approximation specified with 
Sleptsov nets to be implemented as dedicated hardware, which we 
prototype on an FPGA. For mass-parallel solving of PDEs, we 
employ ad-hoc finite-difference schemes and iteration methods 
that allow us to recalculate the lattice values in a single time cycle 
with appropriate accuracy suitable for control of hypersonic 
objects and thermonuclear reactions.   

CCS Concepts 
• Computing methodologies ➝ Concurrent computing 
methodologies   • Computer systems organization ➝ 

Embedded and cyber-physical systems • Mathematics of 
computing ➝ Continuous mathematics.  
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1. INTRODUCTION 

Solving Partial Differential Equations (PDE) [1-3] is a well-
accepted technique for continuous systems modelling in a wide 
range of practical applications. Some specific forms of PDE allow 
us to obtain analytical solutions, which simplify the process of 
their application. In the general case, a given equation is resolved 
numerically; either finite difference or finite element techniques 
are applied. In this paper we focus on specific requirements and 
techniques for fast solving of PDEs for control purposes in 
embedded applications [4]. For example, control of airplane 
engine turbines based on resolving gas dynamics and 
thermodynamics problems, control of hypersonic vehicle 
trajectories, and so on. For these applications, iteration methods 
[2] yield the best performance, allowing us to apply directly a 
mass-parallel computing approach.  

For embedded applications, we offer an approach that implements 
a specialized hardware lattice on an FPGA [5] via generating the 
corresponding Verilog [6] code. For the lattice specification, we 
apply a graphical language of Sleptsov nets [7,8]. We 
considerably simplify the computing structure based on integer 

approximation of a computing lattice, converging with the cellular 
automata techniques [9] for dedicated hardware implementation, 
which is then prototyped on an FPGA [5]. We then benchmark the 
FPGA implementation to measure the applicability of the 
approach for fast control based on the ongoing process of numeral 
solving boundary problems for PDE, where the boundary is 
actually mapped into sensors and actuators. 

The paper is structured as follows:  in section 2 we present XXX.  
In section 3 we discuss Sleptsov Nets and their derivation from 
more generic Petri Nets.  In section 4 we present the primary 
contribution of this paper: the computation model for solving the 
PDEs.  The Verilog implementation is then shown in section 5, 
and benchmarked in section 6.  In section 7 we discuss the success 
of our approach. 

2. NUMERICAL SOLVING PDE  

Partial differential equations describe physical processes in 
mechanics, hydrodynamics, acoustics, heat transfer, electricity, 
magnetism, and other domains. When analytical methods do not 
find solutions to these equations, numerical methods, in particular, 
finite difference methods, are applied [1-3]. The original PDE is 
reduced to a system of difference equations to which direct and 
analytical methods are then applied. In many cases, this is the 
only way to find the solution of PDEs.  

As a case study, we apply the finite difference method for solving 
the Laplace equation based on the technique described in [2] 

 డమ௨(௫,௬)

డ௫మ
+

డమ௨(௫,௬)

డ௬మ
= 0, (1) 

which is replaced by the following difference relation  

𝑢(𝑥 − ℎ, 𝑦) − 2𝑢(𝑥, 𝑦) + 𝑢(𝑥 + ℎ, 𝑦)

ℎଶ
+

𝑢(𝑥, 𝑦 − ℎ) − 2𝑢(𝑥, 𝑦) + 𝑢(𝑥, 𝑦 + ℎ)

ℎଶ
, 

where ℎ > 0 is the discretization step. 

With this substitution, we arrive at an equation that relates the 
values of the desired function at separately taken points, which are 
usually chosen so that they form a square mesh. We construct the 
difference approximations for the case of a function of two 
independent variables, 𝑢(𝑥, 𝑦) on a rectangular mesh. Without 
restricting the generality, we will assume that the change area of 
the argument 𝑥 is the segment 0 ≤ 𝑥 ≤ 1, and the change area of 
the argument 𝑦 is the segment 0 ≤ 𝑦 ≤ 1. Let us divide the 
segments 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1 by points  𝑥௜ = 𝑖ℎ (𝑖 = 0,1,2 … , 𝑁), 



𝑦௝ = 𝑗ℎ (𝑗 = 0,1,2, … , 𝑁) into N equal parts of length ℎ =
ଵ

ே
 each. 

The set of points (𝑥௜ , 𝑦௝) with coordinates 𝑥௜ = 𝑖ℎ (𝑖 = 0,1,2 … , 𝑁) 
and 𝑦௝ = 𝑗ℎ (𝑗 = 0,1,2, … , 𝑁) is called a mesh in the square 0 ≤ 𝑥 ≤

1, 0 ≤ 𝑦 ≤ 1. By 𝑢௜,௝ we denote the value of function u at the points 
with coordinates (𝑥௜, 𝑦௝): 𝑢௜,௝ = 𝑢൫𝑥௜ , 𝑦௝൯. The value of the sought 

function at the boundary nodes is determined for 𝑖 =

0,1,2, … , 𝑁, 𝑗 = 1,2, … 𝑁 − 1  as 

  𝑢௜,଴ = 𝜑(𝑥௜ , 0)   
 𝑢௜,ே = 𝜑(𝑥௜ , 1)   
 𝑢଴,௝ = 𝜑(0, 𝑦௝)    
 𝑢ே,௝ = 𝜑(1, 𝑦௝)    

(2) 

Let us set the initial approximation 𝑢௜,௝
(଴). For internal points of the 

domain, we choose the initial approximation arbitrarily; at the 
boundary, the initial approximation is determined by expressions 
(2). The next approximation is determined by the formula 

𝑢௜,௝
(௦ାଵ)

=
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(ೞ)
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(ೞ)
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(ೞ)
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(ೞ)
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(ೞ)
ା௨೔షభ,ೕషభ

(ೞ)
ା௨೔శభ,ೕషభ

(ೞ)

ଶ଴
,      (3) 

where s is the iteration number s=0, 1, 2, …, 𝑖 = 1, 2, … , 𝑁 − 1,  

𝑗 = 1, 2, … , 𝑁 − 1. 

The calculations (3) continue until the condition (4) is satisfied. 

max
௜,௝

ቚ𝑢௜,௝
(௦ାଵ)

− 𝑢௜,௝
(௦)

ቚ < 𝜀.                         (4) 

As an example, we compute the solution of equation (1) in a 
square with sides of unit length and the following boundary 
conditions: 

𝑢(𝑥, 0) = 1, 0 ≤ 𝑥 ≤ 1 
𝑢(0, 𝑦) = 0, 0 < 𝑦 ≤ 1 
𝑢(𝑥, 1) = 0, 0 ≤ 𝑥 < 1 
𝑢(1, 𝑦) = 1, 0 ≤ 𝑦 ≤ 1 

The results of calculations are shown in Fig. 1, from where it can 
be concluded that the steady-state temperature distribution inside 
the bar takes values between the minimum and maximum 
temperature values at the boundary, which agrees with the 
maximum principle satisfied by the solution of Laplace's equation. 

 

Fig. 1. The surface plot of the temperature distribution inside the beam 

cross-section. 

Using the technique described in [2], we conclude that the 
solution obtained with (3) and (4) converges to the solution of a 
problem (1), (2) at the rate of 𝑂(ℎସ) at any initial approximation. 
Given an accuracy of approximation 𝜀, we compute the mesh step 
as ℎ = √𝜀ర   and the mesh size as 𝑁 = ⌊1/ℎ⌋ to run the iteration 
process. 

3. SLEPTSOV NET COMPUTING 

A Sleptsov net (SN) [7], where a transition fires in multiple 
instances at a step, generalizes a Petri net [10], making it Turing-
complete [11] and running exponentially faster [7].  

In [12] a bipartite graph was used for modelling parallel 
computations with dynamic elements, called tokens [13], situated 
within vertices of the graph’s first part-called places and depicted 
as circles or ovals. 

Vertices of the graph’s second part, called transitions and depicted 
as squares or rectangles, fire consuming tokens from their input 
places and producing tokens within their output places. The 
discrete time process of firing transitions represents the behavior 
of the net. An example of computing an expression on integer 
numbers applying a Sleptsov-Salwicki transition firing rule [11] is 
shown in Fig. 2.  

SN is a tuple 𝑁 = (𝑃, 𝑇, 𝐴, 𝜇଴), where 𝑃 and 𝑇 are finite sets of 
places and transitions, respectively, connected via arcs given by 
the following mapping 𝐴: (𝑃 × 𝑇) ∪ (𝑇 × 𝑃) → ℤஹ଴, where zero 
value means the arc absence and nonzero value specifies the arc 
multiplicity. The mapping 𝜇଴ → ℤஹ଴, gives the initial situation of 
tokens within places called a marking.  

 

Fig. 2. Computing an expression 𝑧 = (2𝑥 + 3𝑦)/4 with an SN. 

We use multisets [14] for SN behavior specification. At a step, a 
maximal submultiset 𝐹′ of the fireable transition multiset 𝐹 fires. 
The arc and the transition firing multiplicities are specified by 
formulae (5) and (6), respectively. 



 𝐶(𝑝, 𝑡) = 𝜇(𝑝)/𝐴(𝑝, 𝑡) (5) 

 𝐶(𝑡) = min
஺(௣,௧)வ଴

𝐶(𝑝, 𝑡) (6) 

Here, at the maximal multiset 𝐹′ choice, we do not split the firing 
multiplicity of a transition and observe obtaining of a nonnegative 
next marking, specified by the SN state equation (7) for 𝑝 ∈ 𝑃, 
𝑡 ∈ 𝐹′. 

𝜇(𝑝)௞ାଵ = 𝜇(𝑝)௞ − ෍ 𝐶(𝑡) ∙ 𝐴(𝑝, 𝑡)

஺(௣,௧)வ଴

+ ෍ 𝐶(𝑡) ∙ 𝐴(𝑝, 𝑡)

஺(௧,௣)வ଴

 (7) 

In (3), we consider a division operation as the whole division. 
Thus, an SN implements directly such operations as addition, 
subtraction, and also multiplication and division by a constant. 

In this paper, in contrast to a other works on SN, we use the data-
flow approach introduced in [7] for solving the Laplace equation 
using a stencil with a von Neumann neighborhood that provided 
the second degree of accuracy compared to the fourth degree of 
(3), (4) using a stencil with a Moore neighborhood. The Sleptsov-
Salwicki rule (5)-(7) yields the maximal parallelism for 
subsequent hardware implementation. We avoid alternatives, 
composing structural conflict-free nets [15] where 𝐹ᇱ = 𝐹. 

Thus, in Fig. 2, we fire two transitions, 𝑡ଵ and 𝑡ଶ, at the first step, 
transition 𝑡ଵ in 3 instances and transition 𝑡ଶ in 2 instances, then, at 
step 2, transition 𝑡ଷ fires in 3 instances. The expression is 
calculated in 2 steps: the multiplication by a constant is specified 
by the multiplicity of the transition incoming arc, and the division 
by a constant is implemented by the transition incoming arc.  

We specify the corresponding transition firing sequence as 

𝜎 = ቊ
𝑡ଵ

ଷ

𝑡ଶ
ଶ

ቋ 𝑡ଷ
ଷ. 

In [7], SNs that implement basic arithmetic and logic operations 
are composed; aspects of processing real numbers and other data 
structures are studied in [16].  

Sleptsov Net Computing (SNC) [17] is a promising approach to 
applying high performance computing to this category of 
problems.. In this paper, we use SNC as the basic approach to 
represent mass-parallel computations. We implement machines to 
run programs drawn in the SN graphical language either in the 
form of software as virtual machines [18] or in hardware that 
yields very high performance as described in [19].  

4. SN PROGRAMS FOR SOLVING PDE 

For the most significant tasks of real-time embedded control, we 
develop a model of computations that is subsequently 
implemented in a semi-hardware form using FPGA [5,20], where 
generated Verilog [6] code defines the specialized hardware. We 
follow a traditional for embedded applications [4,5] way of 
approximating real numbers as fixed-point numbers or, in even 
more simplified form, as integer numbers, supposing an initial 
scaling of numbers with respect to the working range and required 
accuracy of the function approximation. For this purpose, a 
UNIT_VALUE is selected; for instance, if a unit equals 0.001, 

then all the values are expressed with respect to the chosen unit. 
For using unsigned numbers, the corresponding shift of values is 
applied; for instance, having a range from -10 to 10 and the above 
unit, we implement a shift by 10, having the working range of 
values from 0 to 20000.  

Formal issues of convergence for nonnegative integer 
approximation require further investigation, and with such an 
approximation we can directly apply Sleptsov nets, which are easy 
for hardware implementation [19]. Note that there is an intrinsic 
connection of cellular automata (CA) [9] with the iteration 
technique, especially when approximated with nonnegative 
integer numbers. Indeed, the node value, together with a given 
neighborhood and iteration formula, represents the CA rule [9]. 
Thus, we can apply CA theory [9] to study the convergence issues 
[2]. An unchanged CA configuration directly represents 
convergence, though some cycles of configurations with low 
differences of the node values are possible to achieve as well. 

In Fig. 3, we present two different approaches to modeling 
iteration processes by SNs; the first approach (Fig. 3a) is fast and 
rough, though it yields simpler constructs; the second approach 
(Fig. 3b) is more precise, though it runs three times slower and 
contains more graphical elements. The node model represents a 
clan (functional subnet) assuming applicability of the clan 
composition technique for the model properties analysis.  

 

(a) one time cycle per iteration; 



 

(b) three time cycles per iteration. 

Fig. 3. Node model for integer number approximation lattice for 
embedded systems design. 

Both nodes of Fig. 3, implement the iteration formula (3), the 
node shown in Fig. 3b implements it directly, while the node 
shown in Fig. 3a implements it with transformations (5) as a sum 
of 8 addendums in the third line; an intermediate variant is 
possible corresponding to the second line and requiring two time 
cycles.  
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For the node shown in Fig. 3a, a 5 × 5 lattice is composed in Fig. 
4. It runs one iteration in one time cycle for the entire matrix of 
values for the synchronous implementation of SN (Sleptsov-
Salwicki rule [11]). The lattice design is based on the 
transformations of formula (3) represented with (8). 

Each of eight addendums is implemented by a separate transition 
of a neighboring node in Fig. 3a; separating division operations 
affects the accuracy of computations, though leads to a one-time-
cycle implementation with enhanced performance. Actually, a 
transition divides the node value by 5 or 20 and adds the obtained 
values to the neighboring nodes; the division is implemented 
using the corresponding weight of the transition incoming arc, 
while the addition is implemented implicitly with a few incoming 
arcs of the corresponding place. Actually, the boundary nodes are 
not recalculated, while each internal node place has 8 incoming 
arcs bringing the corresponding addendums of the final expression 
in the transformations (24).  

 
Fig. 4. An integer number approximation lattice solving PDE for 

embedded systems design with a node shown in Fig. 3a. 

We avoid conflicts to omit the choice of fireable multiset of SN 
transitions and use formula (5) – (7) directly to simulate the SN 
step. Actually, in Fig. 3a, we replace place 𝑢௜,௝ by a pair of places 
𝑢௜,௝ and 𝑢௜,௝′ (one place for each outgoing arc) to avoid conflicts, 

directing the same incoming arcs to each of them that leads to a 
rather tangled picture. For thorough implementations, we also 
need to clear the division reminder from places 𝑢௜,௝ and 𝑢௜,௝′. 

If this fastest scheme is not suitable from the error of integer 
division point of view, a three time-cycle implementation strictly 
following formula (8) will be the best choice for nonnegative 
integer approximation. The corresponding node model is 
represented in Fig. 3b, yielding a lattice shown in Fig. 5. 

 



Fig. 5. An integer number approximation lattice solving PDE for 

embedded systems design with a node shown in Fig. 3b. 

For formal specification of SN lattices, we actually apply the 
multiset rewriting system based technique [14], which yields 
expression (9) specifying the lattice shown in Fig. 4 with 
duplicated places 𝑢௜,௝ and 𝑢௜,௝′ and expression (10) specifying the 

borders to obtain a structural conflict-free net [15]. For each line, 
a prefix gives the transition name; its input places are written to 
the left of the arrow symbol; its input places are written to the 
right of the arrow symbol. To avoid a bulky expression (10) with 
a separate line for each border and each corner of the domain, we 
suppose that the outgoing arcs, leading to borders, are omitted; 
thus, we filter the right part of (10) with the following conditions: 
𝑖 > 0, 𝑖 < 𝑁 − 1, 𝑗 > 0, 𝑗 < 𝑁 − 1.  

ቆ
𝑑𝑖𝑣5௜,௝: 5 ∙ 𝑢௜,௝ → 𝑢௜ିଵ,௝ , 𝑢௜ିଵ,௝

ᇱ , 𝑢௜ାଵ,௝ , 𝑢௜ାଵ,௝
ᇱ , 𝑢௜,௝ିଵ, 𝑢௜,௝ିଵ

ᇱ , 𝑢௜,௝ାଵ, 𝑢௜,௝ାଵ′

𝑑𝑖𝑣20௜,௝: 20 ∙ 𝑢௜,௝
ᇱ → 𝑢௜ିଵ,௝ିଵ, 𝑢௜ିଵ,௝ିଵ

ᇱ , 𝑢௜ିଵ,௝ାଵ, 𝑢௜ିଵ,௝ାଵ
ᇱ , 𝑢௜ାଵ,௝ିଵ , 𝑢௜ାଵ,௝ିଵ

ᇱ , 𝑢௜ାଵ,௝ାଵ, 𝑢௜ାଵ,௝ାଵ′
ቇ  

      1 ≤ 𝑖 ≤ 𝑁 − 1, 1 ≤ 𝑗 ≤ 𝑁 − 1                                                                                                   (9) 

ቆ
𝑑𝑖𝑣5௜,௝: 5 ∙ 𝑢௜,௝ → 5 ∙ 𝑢௜,௝, 𝑢௜ିଵ,௝ , 𝑢௜ାଵ,௝ , 𝑢௜,௝ିଵ, 𝑢௜,௝ାଵ ,

𝑑𝑖𝑣20௜,௝: 20 ∙ 𝑢௜,௝
ᇱ → 20 ∙ 𝑢௜,௝′, 𝑢௜ିଵ,௝ିଵ

ᇱ , 𝑢௜ିଵ,௝ାଵ
ᇱ , 𝑢௜ାଵ,௝ିଵ

ᇱ , 𝑢௜ାଵ,௝ାଵ′
ቇ      

      𝑖 = 0, 𝑖 = 𝑁 − 1, 𝑗 = 0, 𝑗 = 𝑁 − 1                                                                                          (10) 

For verification of SN programs, we apply system Tina [21], 
which recently implements SNs and represents an IDE [18] for the 
novel SNC paradigm of computations [17-19]. 

5. GENERATING VERILOG CODE ON SN 
PROGRAM 
The SN model represents the lattice specification in a way 
amenable to implementation [19] in Verilog and subsequently 
synthesis on an FPGA [5].  We employ either direct mapping of 
the lattice into explicit Verilog statements or using loops as a 
template with respect to the lattice size parameter N. The 
corresponding code fragment is shown in Fig. 6. On the rising 
edge of the clock, the entire lattice is recalculated for K iterations.  
The result for internal nodes is indicated using the built-in LED 
array.   

We run a single iteration during a time cycle; the subsequent fine-
tuning of Verilog code supposes adjusting the iteration time with 
the device clock with the purpose of running the maximal possible 
number of iterations during a single time cycle. Since the 
conventional division of integer numbers just omits the fractional 
part, we need to provide a correction for better rounding. Because 
of this reason, we compare the division reminder num%20 with a 
given constant ROUND_EDGE to add an extra unit. As a result of 
fine-tuning, we can recommend using the constant 
ROUND_EDGE values from 10 to 12.  

always @(posedge sys_clk) begin 

     if (counter < `K ) begin 

        for(i = 1; i < `N-1; i = i+1) begin // iterate 

          for(j = 1; j < `N-1; j = j+1) begin  

            cross=u[i+1][j]+u[i-1][j]+u[i][j+1]+u[i][j-1]; 

            diag=u[i+1][j+1]+u[i+1][j-1]+ 

                             u[i-1][j+1]+u[i-1][j-1]; 

            num=4*cross+diag; 

            u1[i][j] = num/20+((num%ROUND_EDGE)<11)?0:1; 

          end 

        end 

        for(i = 1; i < `N-1; i = i+1) begin // u=u1; 

          for(j = 1; j < `N-1; j = j+1) begin  

            u[i][j] = u1[i][j]; 

          end 

        end 

       

     end          

     else 

       led = ~ u[2][2][5:0];   

     end 

Fig. 6. Listing of Verilog code snippet of the iteration (8) hardware 

implementation. 

Fig. 7b shows the node tested with a lattice for N=5 that 
recalculates the value of its internal part represented by a 3 × 3 
lattice using the perimeter nodes as constant boundary conditions. 
The lattice layout represents the connection of 9 nodes. Here we 
do not rearrange the automatically obtained layout; though, when 
optimizing it for production, the lattice structure will be imposed, 
providing the minimal wire (connections) length and the minimal 
number of intersections to trace on additional layers. 

An adjusted constant number of iterations, for a certain range of 
considered magnitudes, represents a good compromise with 
respect to the limited resources of embedded applications. A 
layout of a node, obtained as a result of Verilog code processing, 
is shown in Fig. 7; here we use neighboring node values according 
to the names specified in Figs. 3 – 5; it just describes the data flow 
of formula (3), we use a 16 bits unsigned integer approximation.   

  

 
a) layout of a node obtained on Verilog code (automatic); 

 
b) layout of lattice with node substitution (automatic). 

Fig. 7. Layout of 5x5 lattice with constant values on borders. 



6. BENCHMARKS FOR FPGA  
A Tang Nano 9k FPGA operated by Gowin FPGA Designer [19] 
was used for benchmarking. The dependence of solution time on 
the lattice size for required precision is shown in Fig. 8. For 
50MHz clock, we run an iteration in about 20 ns; thus, we 
calculate about K=50 iterations in 1 us that provides a rather good 
approximation of the optimal control specified by PDE (a system 
of PDEs). Benchmarks completely correspond to simplified 
evaluations by multiplying the number of iterations by the 
device’s basic time cycle. Modern advanced FPGAs work on 
frequencies higher that 1 GHz, which allows us to run K=1000 
iterations in 1 us or to have a nanosecond reaction with fewer 
numbers of iterations.  

One could think that the chosen number of steps within the 
figures, 𝑁 = 4 ( 𝑁 + 1 = 5 dots) serves for illustrative purposes 
only, though we will show that it provides rather good 
approximation as well. Having a step h=1/4=0.25, the scheme (3), 
(4) provides the accuracy of approximation 𝜀 ≈ ℎସ = 0.25ସ ≈

0.004, using the same value in formula (9), that requires about 20 
iterations to run. The FPGA can clearly handle a mesh of 𝑁 = 10, 
providing a theoretical accuracy of computations of about 0.0001.  

 
a) real numbers; 

 
b) integer approximation on FPGA. 

Fig. 8. Dependence of the solution time (number of iterations) on the 

actual accuracy of approximation. 

For computations represented in Fig. 7, we were using fine-tuning 
which includes, for the embedded implementation, adjusting the 
following set of parameters: N, UNIT_VALUE, K, and 
ROUND_EDGE. We reach the required accuracy by increasing N 
and decreasing UNIT_VALUE, which requires increasing K to 
achieve the theoretical accuracy, though because of the rounding 
error accumulation, it shifts the result with respect to the precise 

solution that is adjusted by the appropriate ROUND_EDGE 
choice.  

In this case study we consider constant boundary conditions and, 
as a goal, the convergence to an unmovable or pulsing with low 
error configuration of the nonnegative integer approximation (a 
cellular automaton). For real-life embedded applications, extended 
systems are of certain interest where sensors are attached in the 
form of changing border conditions, and the goal values for the 
optimal control are taken from certain specified locations of the 
lattice. In this case, we are not interested in halting the computing 
structure but keeping it running and processing possible updates 
of sensors. For control systems that change time scale and have 
prolonged idling periods, switching to energy-saving modes of 
functioning is possible, when achieving good convergence, to 
awake on a change of sensor inputs.  

7. CONCLUSIONS 
In this paper, we have applied infinite Sleptsov (generalized Petri) 
nets for computing structure design aimed at fast mass-parallel 
numerical solving of practically significant problems specified by 
PDE or systems of PDE focusing on the domain of embedded 
applications with specialized hardware prototyped on an FPGA.  

We start with a given PDE or a system of PDEs and boundary 
conditions, then apply finite difference methods using a mesh of 
appropriate shape for its numerical solution with required 
accuracy (error). For an efficient solution, in an ideal case, the 
task spatial structure should be directly mapped into the 
corresponding computing-communication structure, which is 
possible for dedicated hardware implementation or its prototyping 
with FPGA for embedded control applications. We focus on the 
connection mesh obtained using Moore’s [9] for considerably 
better approximation (as a fourth degree compared to the second 
degree depending on the finite difference mesh step size). 

Composing SN data-flow programs, we considered the integer 
number approximation of the iteration technique that represents, 
in essence, a cellular automaton approach. SN graphical language 
has been employed as an intermediate construct to generate 
Verilog code for dedicated hardware implementations or 
prototyping on FPGA. For the FPGA implementation, 
benchmarks and prospects of application for fast process control 
have been discussed. Example applications include plane and 
rocket engines, (thermo) nuclear power stations, the trajectory of 
hypersonic moving objects, and other real-time high integrity 
control systems.  
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