
Mass-parallel Sleptsov Net-Based Solving PDEs

on FPGA for Embedded Control

Dmitry A. Zaitseva*, Alexander A. Kostikovb, Alistair A. McEwana*,

a The University of Derby, Derby, UK, ORCID: 0000-0001-5698-7324
b Technical University "Metinvest Polytechnic" LLC, Zaporizhzhe, Ukraine, ORCID: 0000-0002-1007-7912

ABSTRACT

Real-time embedded applications are normally viewed as
continuous processes and are often specified using Partial
Differential Equations (PDEs) and with certain boundary
conditions. In this paper we present techniques for fast mass-
parallel numerical solving of PDEs. We compose specialized
lattices based on the integer number approximation specified with
Sleptsov nets to be implemented as dedicated hardware, which we
prototype on an FPGA. For mass-parallel solving of PDEs, we
employ ad-hoc finite-difference schemes and iteration methods
that allow us to recalculate the lattice values in a single time cycle
with appropriate accuracy suitable for control of hypersonic
objects and thermonuclear reactions.

CCS Concepts
• Computing methodologies ➝ Concurrent computing
methodologies • Computer systems organization ➝

Embedded and cyber-physical systems • Mathematics of
computing ➝ Continuous mathematics.

Keywords

Partial-differential equation; mass-parallel solution; Sleptsov net;
FPGA; embedded control

1. INTRODUCTION

Solving Partial Differential Equations (PDE) [1-3] is a well-
accepted technique for continuous systems modelling in a wide
range of practical applications. Some specific forms of PDE allow
us to obtain analytical solutions, which simplify the process of
their application. In the general case, a given equation is resolved
numerically; either finite difference or finite element techniques
are applied. In this paper we focus on specific requirements and
techniques for fast solving of PDEs for control purposes in
embedded applications [4]. For example, control of airplane
engine turbines based on resolving gas dynamics and
thermodynamics problems, control of hypersonic vehicle
trajectories, and so on. For these applications, iteration methods
[2] yield the best performance, allowing us to apply directly a
mass-parallel computing approach.

For embedded applications, we offer an approach that implements
a specialized hardware lattice on an FPGA [5] via generating the
corresponding Verilog [6] code. For the lattice specification, we
apply a graphical language of Sleptsov nets [7,8]. We
considerably simplify the computing structure based on integer

approximation of a computing lattice, converging with the cellular
automata techniques [9] for dedicated hardware implementation,
which is then prototyped on an FPGA [5]. We then benchmark the
FPGA implementation to measure the applicability of the
approach for fast control based on the ongoing process of numeral
solving boundary problems for PDE, where the boundary is
actually mapped into sensors and actuators.

The paper is structured as follows: in section 2 we present XXX.
In section 3 we discuss Sleptsov Nets and their derivation from
more generic Petri Nets. In section 4 we present the primary
contribution of this paper: the computation model for solving the
PDEs. The Verilog implementation is then shown in section 5,
and benchmarked in section 6. In section 7 we discuss the success
of our approach.

2. NUMERICAL SOLVING PDE

Partial differential equations describe physical processes in
mechanics, hydrodynamics, acoustics, heat transfer, electricity,
magnetism, and other domains. When analytical methods do not
find solutions to these equations, numerical methods, in particular,
finite difference methods, are applied [1-3]. The original PDE is
reduced to a system of difference equations to which direct and
analytical methods are then applied. In many cases, this is the
only way to find the solution of PDEs.

As a case study, we apply the finite difference method for solving
the Laplace equation based on the technique described in [2]

 డమ௨(௫,௬)

డ௫మ
+

డమ௨(௫,௬)

డ௬మ
= 0, (1)

which is replaced by the following difference relation

𝑢(𝑥 − ℎ, 𝑦) − 2𝑢(𝑥, 𝑦) + 𝑢(𝑥 + ℎ, 𝑦)

ℎଶ
+

𝑢(𝑥, 𝑦 − ℎ) − 2𝑢(𝑥, 𝑦) + 𝑢(𝑥, 𝑦 + ℎ)

ℎଶ
,

where ℎ > 0 is the discretization step.

With this substitution, we arrive at an equation that relates the
values of the desired function at separately taken points, which are
usually chosen so that they form a square mesh. We construct the
difference approximations for the case of a function of two
independent variables, 𝑢(𝑥, 𝑦) on a rectangular mesh. Without
restricting the generality, we will assume that the change area of
the argument 𝑥 is the segment 0 ≤ 𝑥 ≤ 1, and the change area of
the argument 𝑦 is the segment 0 ≤ 𝑦 ≤ 1. Let us divide the
segments 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1 by points 𝑥௜ = 𝑖ℎ (𝑖 = 0,1,2 … , 𝑁),

𝑦௝ = 𝑗ℎ (𝑗 = 0,1,2, … , 𝑁) into N equal parts of length ℎ =
ଵ

ே
 each.

The set of points (𝑥௜ , 𝑦௝) with coordinates 𝑥௜ = 𝑖ℎ (𝑖 = 0,1,2 … , 𝑁)
and 𝑦௝ = 𝑗ℎ (𝑗 = 0,1,2, … , 𝑁) is called a mesh in the square 0 ≤ 𝑥 ≤

1, 0 ≤ 𝑦 ≤ 1. By 𝑢௜,௝ we denote the value of function u at the points
with coordinates (𝑥௜, 𝑦௝): 𝑢௜,௝ = 𝑢൫𝑥௜ , 𝑦௝൯. The value of the sought

function at the boundary nodes is determined for 𝑖 =

0,1,2, … , 𝑁, 𝑗 = 1,2, … 𝑁 − 1 as

 𝑢௜,଴ = 𝜑(𝑥௜ , 0)
 𝑢௜,ே = 𝜑(𝑥௜ , 1)
 𝑢଴,௝ = 𝜑(0, 𝑦௝)
 𝑢ே,௝ = 𝜑(1, 𝑦௝)

(2)

Let us set the initial approximation 𝑢௜,௝
(଴). For internal points of the

domain, we choose the initial approximation arbitrarily; at the
boundary, the initial approximation is determined by expressions
(2). The next approximation is determined by the formula

𝑢௜,௝
(௦ାଵ)

=
ସቀ௨೔,ೕషభ

(ೞ)
ା௨೔షభ,ೕ

(ೞ)
ା௨೔,ೕశభ

(ೞ)
ା௨೔శభ,ೕ

(ೞ)
ቁା௨೔షభ,ೕషభ

(ೞ)
ା௨೔శభ,ೕశభ

(ೞ)
ା௨೔షభ,ೕషభ

(ೞ)
ା௨೔శభ,ೕషభ

(ೞ)

ଶ଴
, (3)

where s is the iteration number s=0, 1, 2, …, 𝑖 = 1, 2, … , 𝑁 − 1,

𝑗 = 1, 2, … , 𝑁 − 1.

The calculations (3) continue until the condition (4) is satisfied.

max
௜,௝

ቚ𝑢௜,௝
(௦ାଵ)

− 𝑢௜,௝
(௦)

ቚ < 𝜀. (4)

As an example, we compute the solution of equation (1) in a
square with sides of unit length and the following boundary
conditions:

𝑢(𝑥, 0) = 1, 0 ≤ 𝑥 ≤ 1
𝑢(0, 𝑦) = 0, 0 < 𝑦 ≤ 1
𝑢(𝑥, 1) = 0, 0 ≤ 𝑥 < 1
𝑢(1, 𝑦) = 1, 0 ≤ 𝑦 ≤ 1

The results of calculations are shown in Fig. 1, from where it can
be concluded that the steady-state temperature distribution inside
the bar takes values between the minimum and maximum
temperature values at the boundary, which agrees with the
maximum principle satisfied by the solution of Laplace's equation.

Fig. 1. The surface plot of the temperature distribution inside the beam

cross-section.

Using the technique described in [2], we conclude that the
solution obtained with (3) and (4) converges to the solution of a
problem (1), (2) at the rate of 𝑂(ℎସ) at any initial approximation.
Given an accuracy of approximation 𝜀, we compute the mesh step
as ℎ = √𝜀ర and the mesh size as 𝑁 = ⌊1/ℎ⌋ to run the iteration
process.

3. SLEPTSOV NET COMPUTING

A Sleptsov net (SN) [7], where a transition fires in multiple
instances at a step, generalizes a Petri net [10], making it Turing-
complete [11] and running exponentially faster [7].

In [12] a bipartite graph was used for modelling parallel
computations with dynamic elements, called tokens [13], situated
within vertices of the graph’s first part-called places and depicted
as circles or ovals.

Vertices of the graph’s second part, called transitions and depicted
as squares or rectangles, fire consuming tokens from their input
places and producing tokens within their output places. The
discrete time process of firing transitions represents the behavior
of the net. An example of computing an expression on integer
numbers applying a Sleptsov-Salwicki transition firing rule [11] is
shown in Fig. 2.

SN is a tuple 𝑁 = (𝑃, 𝑇, 𝐴, 𝜇଴), where 𝑃 and 𝑇 are finite sets of
places and transitions, respectively, connected via arcs given by
the following mapping 𝐴: (𝑃 × 𝑇) ∪ (𝑇 × 𝑃) → ℤஹ଴, where zero
value means the arc absence and nonzero value specifies the arc
multiplicity. The mapping 𝜇଴ → ℤஹ଴, gives the initial situation of
tokens within places called a marking.

Fig. 2. Computing an expression 𝑧 = (2𝑥 + 3𝑦)/4 with an SN.

We use multisets [14] for SN behavior specification. At a step, a
maximal submultiset 𝐹′ of the fireable transition multiset 𝐹 fires.
The arc and the transition firing multiplicities are specified by
formulae (5) and (6), respectively.

 𝐶(𝑝, 𝑡) = 𝜇(𝑝)/𝐴(𝑝, 𝑡) (5)

 𝐶(𝑡) = min
஺(௣,௧)வ଴

𝐶(𝑝, 𝑡) (6)

Here, at the maximal multiset 𝐹′ choice, we do not split the firing
multiplicity of a transition and observe obtaining of a nonnegative
next marking, specified by the SN state equation (7) for 𝑝 ∈ 𝑃,
𝑡 ∈ 𝐹′.

𝜇(𝑝)௞ାଵ = 𝜇(𝑝)௞ − ෍ 𝐶(𝑡) ∙ 𝐴(𝑝, 𝑡)

஺(௣,௧)வ଴

+ ෍ 𝐶(𝑡) ∙ 𝐴(𝑝, 𝑡)

஺(௧,௣)வ଴

 (7)

In (3), we consider a division operation as the whole division.
Thus, an SN implements directly such operations as addition,
subtraction, and also multiplication and division by a constant.

In this paper, in contrast to a other works on SN, we use the data-
flow approach introduced in [7] for solving the Laplace equation
using a stencil with a von Neumann neighborhood that provided
the second degree of accuracy compared to the fourth degree of
(3), (4) using a stencil with a Moore neighborhood. The Sleptsov-
Salwicki rule (5)-(7) yields the maximal parallelism for
subsequent hardware implementation. We avoid alternatives,
composing structural conflict-free nets [15] where 𝐹ᇱ = 𝐹.

Thus, in Fig. 2, we fire two transitions, 𝑡ଵ and 𝑡ଶ, at the first step,
transition 𝑡ଵ in 3 instances and transition 𝑡ଶ in 2 instances, then, at
step 2, transition 𝑡ଷ fires in 3 instances. The expression is
calculated in 2 steps: the multiplication by a constant is specified
by the multiplicity of the transition incoming arc, and the division
by a constant is implemented by the transition incoming arc.

We specify the corresponding transition firing sequence as

𝜎 = ቊ
𝑡ଵ

ଷ

𝑡ଶ
ଶ

ቋ 𝑡ଷ
ଷ.

In [7], SNs that implement basic arithmetic and logic operations
are composed; aspects of processing real numbers and other data
structures are studied in [16].

Sleptsov Net Computing (SNC) [17] is a promising approach to
applying high performance computing to this category of
problems.. In this paper, we use SNC as the basic approach to
represent mass-parallel computations. We implement machines to
run programs drawn in the SN graphical language either in the
form of software as virtual machines [18] or in hardware that
yields very high performance as described in [19].

4. SN PROGRAMS FOR SOLVING PDE

For the most significant tasks of real-time embedded control, we
develop a model of computations that is subsequently
implemented in a semi-hardware form using FPGA [5,20], where
generated Verilog [6] code defines the specialized hardware. We
follow a traditional for embedded applications [4,5] way of
approximating real numbers as fixed-point numbers or, in even
more simplified form, as integer numbers, supposing an initial
scaling of numbers with respect to the working range and required
accuracy of the function approximation. For this purpose, a
UNIT_VALUE is selected; for instance, if a unit equals 0.001,

then all the values are expressed with respect to the chosen unit.
For using unsigned numbers, the corresponding shift of values is
applied; for instance, having a range from -10 to 10 and the above
unit, we implement a shift by 10, having the working range of
values from 0 to 20000.

Formal issues of convergence for nonnegative integer
approximation require further investigation, and with such an
approximation we can directly apply Sleptsov nets, which are easy
for hardware implementation [19]. Note that there is an intrinsic
connection of cellular automata (CA) [9] with the iteration
technique, especially when approximated with nonnegative
integer numbers. Indeed, the node value, together with a given
neighborhood and iteration formula, represents the CA rule [9].
Thus, we can apply CA theory [9] to study the convergence issues
[2]. An unchanged CA configuration directly represents
convergence, though some cycles of configurations with low
differences of the node values are possible to achieve as well.

In Fig. 3, we present two different approaches to modeling
iteration processes by SNs; the first approach (Fig. 3a) is fast and
rough, though it yields simpler constructs; the second approach
(Fig. 3b) is more precise, though it runs three times slower and
contains more graphical elements. The node model represents a
clan (functional subnet) assuming applicability of the clan
composition technique for the model properties analysis.

(a) one time cycle per iteration;

(b) three time cycles per iteration.

Fig. 3. Node model for integer number approximation lattice for
embedded systems design.

Both nodes of Fig. 3, implement the iteration formula (3), the
node shown in Fig. 3b implements it directly, while the node
shown in Fig. 3a implements it with transformations (5) as a sum
of 8 addendums in the third line; an intermediate variant is
possible corresponding to the second line and requiring two time
cycles.

𝑢௜,௝
(௦ାଵ)

==
4൫𝑢௜,௝ିଵ

(௦)
+ 𝑢௜ିଵ,௝

(௦)
+ 𝑢௜,௝ାଵ

(௦)
+ 𝑢௜ାଵ,௝

(௦)
൯ + 𝑢௜ିଵ,௝ିଵ

(௦)
+ 𝑢௜ାଵ,௝ାଵ

(௦)
+ 𝑢௜ିଵ,௝ିଵ

(௦)
+ 𝑢௜ାଵ,௝ିଵ

(௦)

20

=

୳౟,ౠషభ
(౩)

ା୳౟షభ,ౠ
(౩)

ା୳౟,ౠశభ
(౩)

ା୳౟శభ,ౠ
(౩)

ହ
+

୳౟షభ,ౠషభ
(౩)

ା୳౟శభ,ౠశభ
(౩)

ା୳౟షభ,ౠషభ
(౩)

ା୳౟శభ,ౠషభ
(౩)

ଶ଴
=

௨೔,ೕషభ
(ೞ)

ହ
+

௨೔షభ,ೕ
(ೞ)

ହ
+

௨೔,ೕశభ
(ೞ)

ହ
+

௨೔శభ,ೕ
(ೞ)

ହ
+

௨೔షభ,ೕషభ
(ೞ)

ଶ଴
+

௨೔శభ,ೕశభ
(ೞ)

ଶ଴
+

௨೔షభ,ೕషభ
(ೞ)

ଶ଴
+

௨೔శభ,ೕషభ
(ೞ)

ଶ଴
. (8)

For the node shown in Fig. 3a, a 5 × 5 lattice is composed in Fig.
4. It runs one iteration in one time cycle for the entire matrix of
values for the synchronous implementation of SN (Sleptsov-
Salwicki rule [11]). The lattice design is based on the
transformations of formula (3) represented with (8).

Each of eight addendums is implemented by a separate transition
of a neighboring node in Fig. 3a; separating division operations
affects the accuracy of computations, though leads to a one-time-
cycle implementation with enhanced performance. Actually, a
transition divides the node value by 5 or 20 and adds the obtained
values to the neighboring nodes; the division is implemented
using the corresponding weight of the transition incoming arc,
while the addition is implemented implicitly with a few incoming
arcs of the corresponding place. Actually, the boundary nodes are
not recalculated, while each internal node place has 8 incoming
arcs bringing the corresponding addendums of the final expression
in the transformations (24).

Fig. 4. An integer number approximation lattice solving PDE for

embedded systems design with a node shown in Fig. 3a.

We avoid conflicts to omit the choice of fireable multiset of SN
transitions and use formula (5) – (7) directly to simulate the SN
step. Actually, in Fig. 3a, we replace place 𝑢௜,௝ by a pair of places
𝑢௜,௝ and 𝑢௜,௝′ (one place for each outgoing arc) to avoid conflicts,

directing the same incoming arcs to each of them that leads to a
rather tangled picture. For thorough implementations, we also
need to clear the division reminder from places 𝑢௜,௝ and 𝑢௜,௝′.

If this fastest scheme is not suitable from the error of integer
division point of view, a three time-cycle implementation strictly
following formula (8) will be the best choice for nonnegative
integer approximation. The corresponding node model is
represented in Fig. 3b, yielding a lattice shown in Fig. 5.

Fig. 5. An integer number approximation lattice solving PDE for

embedded systems design with a node shown in Fig. 3b.

For formal specification of SN lattices, we actually apply the
multiset rewriting system based technique [14], which yields
expression (9) specifying the lattice shown in Fig. 4 with
duplicated places 𝑢௜,௝ and 𝑢௜,௝′ and expression (10) specifying the

borders to obtain a structural conflict-free net [15]. For each line,
a prefix gives the transition name; its input places are written to
the left of the arrow symbol; its input places are written to the
right of the arrow symbol. To avoid a bulky expression (10) with
a separate line for each border and each corner of the domain, we
suppose that the outgoing arcs, leading to borders, are omitted;
thus, we filter the right part of (10) with the following conditions:
𝑖 > 0, 𝑖 < 𝑁 − 1, 𝑗 > 0, 𝑗 < 𝑁 − 1.

ቆ
𝑑𝑖𝑣5௜,௝: 5 ∙ 𝑢௜,௝ → 𝑢௜ିଵ,௝ , 𝑢௜ିଵ,௝

ᇱ , 𝑢௜ାଵ,௝ , 𝑢௜ାଵ,௝
ᇱ , 𝑢௜,௝ିଵ, 𝑢௜,௝ିଵ

ᇱ , 𝑢௜,௝ାଵ, 𝑢௜,௝ାଵ′

𝑑𝑖𝑣20௜,௝: 20 ∙ 𝑢௜,௝
ᇱ → 𝑢௜ିଵ,௝ିଵ, 𝑢௜ିଵ,௝ିଵ

ᇱ , 𝑢௜ିଵ,௝ାଵ, 𝑢௜ିଵ,௝ାଵ
ᇱ , 𝑢௜ାଵ,௝ିଵ , 𝑢௜ାଵ,௝ିଵ

ᇱ , 𝑢௜ାଵ,௝ାଵ, 𝑢௜ାଵ,௝ାଵ′
ቇ

 1 ≤ 𝑖 ≤ 𝑁 − 1, 1 ≤ 𝑗 ≤ 𝑁 − 1 (9)

ቆ
𝑑𝑖𝑣5௜,௝: 5 ∙ 𝑢௜,௝ → 5 ∙ 𝑢௜,௝, 𝑢௜ିଵ,௝ , 𝑢௜ାଵ,௝ , 𝑢௜,௝ିଵ, 𝑢௜,௝ାଵ ,

𝑑𝑖𝑣20௜,௝: 20 ∙ 𝑢௜,௝
ᇱ → 20 ∙ 𝑢௜,௝′, 𝑢௜ିଵ,௝ିଵ

ᇱ , 𝑢௜ିଵ,௝ାଵ
ᇱ , 𝑢௜ାଵ,௝ିଵ

ᇱ , 𝑢௜ାଵ,௝ାଵ′
ቇ

 𝑖 = 0, 𝑖 = 𝑁 − 1, 𝑗 = 0, 𝑗 = 𝑁 − 1 (10)

For verification of SN programs, we apply system Tina [21],
which recently implements SNs and represents an IDE [18] for the
novel SNC paradigm of computations [17-19].

5. GENERATING VERILOG CODE ON SN
PROGRAM
The SN model represents the lattice specification in a way
amenable to implementation [19] in Verilog and subsequently
synthesis on an FPGA [5]. We employ either direct mapping of
the lattice into explicit Verilog statements or using loops as a
template with respect to the lattice size parameter N. The
corresponding code fragment is shown in Fig. 6. On the rising
edge of the clock, the entire lattice is recalculated for K iterations.
The result for internal nodes is indicated using the built-in LED
array.

We run a single iteration during a time cycle; the subsequent fine-
tuning of Verilog code supposes adjusting the iteration time with
the device clock with the purpose of running the maximal possible
number of iterations during a single time cycle. Since the
conventional division of integer numbers just omits the fractional
part, we need to provide a correction for better rounding. Because
of this reason, we compare the division reminder num%20 with a
given constant ROUND_EDGE to add an extra unit. As a result of
fine-tuning, we can recommend using the constant
ROUND_EDGE values from 10 to 12.

always @(posedge sys_clk) begin

 if (counter < `K) begin

 for(i = 1; i < `N-1; i = i+1) begin // iterate

 for(j = 1; j < `N-1; j = j+1) begin

 cross=u[i+1][j]+u[i-1][j]+u[i][j+1]+u[i][j-1];

 diag=u[i+1][j+1]+u[i+1][j-1]+

 u[i-1][j+1]+u[i-1][j-1];

 num=4*cross+diag;

 u1[i][j] = num/20+((num%ROUND_EDGE)<11)?0:1;

 end

 end

 for(i = 1; i < `N-1; i = i+1) begin // u=u1;

 for(j = 1; j < `N-1; j = j+1) begin

 u[i][j] = u1[i][j];

 end

 end

 end

 else

 led = ~ u[2][2][5:0];

 end

Fig. 6. Listing of Verilog code snippet of the iteration (8) hardware

implementation.

Fig. 7b shows the node tested with a lattice for N=5 that
recalculates the value of its internal part represented by a 3 × 3
lattice using the perimeter nodes as constant boundary conditions.
The lattice layout represents the connection of 9 nodes. Here we
do not rearrange the automatically obtained layout; though, when
optimizing it for production, the lattice structure will be imposed,
providing the minimal wire (connections) length and the minimal
number of intersections to trace on additional layers.

An adjusted constant number of iterations, for a certain range of
considered magnitudes, represents a good compromise with
respect to the limited resources of embedded applications. A
layout of a node, obtained as a result of Verilog code processing,
is shown in Fig. 7; here we use neighboring node values according
to the names specified in Figs. 3 – 5; it just describes the data flow
of formula (3), we use a 16 bits unsigned integer approximation.

a) layout of a node obtained on Verilog code (automatic);

b) layout of lattice with node substitution (automatic).

Fig. 7. Layout of 5x5 lattice with constant values on borders.

6. BENCHMARKS FOR FPGA
A Tang Nano 9k FPGA operated by Gowin FPGA Designer [19]
was used for benchmarking. The dependence of solution time on
the lattice size for required precision is shown in Fig. 8. For
50MHz clock, we run an iteration in about 20 ns; thus, we
calculate about K=50 iterations in 1 us that provides a rather good
approximation of the optimal control specified by PDE (a system
of PDEs). Benchmarks completely correspond to simplified
evaluations by multiplying the number of iterations by the
device’s basic time cycle. Modern advanced FPGAs work on
frequencies higher that 1 GHz, which allows us to run K=1000
iterations in 1 us or to have a nanosecond reaction with fewer
numbers of iterations.

One could think that the chosen number of steps within the
figures, 𝑁 = 4 (𝑁 + 1 = 5 dots) serves for illustrative purposes
only, though we will show that it provides rather good
approximation as well. Having a step h=1/4=0.25, the scheme (3),
(4) provides the accuracy of approximation 𝜀 ≈ ℎସ = 0.25ସ ≈

0.004, using the same value in formula (9), that requires about 20
iterations to run. The FPGA can clearly handle a mesh of 𝑁 = 10,
providing a theoretical accuracy of computations of about 0.0001.

a) real numbers;

b) integer approximation on FPGA.

Fig. 8. Dependence of the solution time (number of iterations) on the

actual accuracy of approximation.

For computations represented in Fig. 7, we were using fine-tuning
which includes, for the embedded implementation, adjusting the
following set of parameters: N, UNIT_VALUE, K, and
ROUND_EDGE. We reach the required accuracy by increasing N
and decreasing UNIT_VALUE, which requires increasing K to
achieve the theoretical accuracy, though because of the rounding
error accumulation, it shifts the result with respect to the precise

solution that is adjusted by the appropriate ROUND_EDGE
choice.

In this case study we consider constant boundary conditions and,
as a goal, the convergence to an unmovable or pulsing with low
error configuration of the nonnegative integer approximation (a
cellular automaton). For real-life embedded applications, extended
systems are of certain interest where sensors are attached in the
form of changing border conditions, and the goal values for the
optimal control are taken from certain specified locations of the
lattice. In this case, we are not interested in halting the computing
structure but keeping it running and processing possible updates
of sensors. For control systems that change time scale and have
prolonged idling periods, switching to energy-saving modes of
functioning is possible, when achieving good convergence, to
awake on a change of sensor inputs.

7. CONCLUSIONS
In this paper, we have applied infinite Sleptsov (generalized Petri)
nets for computing structure design aimed at fast mass-parallel
numerical solving of practically significant problems specified by
PDE or systems of PDE focusing on the domain of embedded
applications with specialized hardware prototyped on an FPGA.

We start with a given PDE or a system of PDEs and boundary
conditions, then apply finite difference methods using a mesh of
appropriate shape for its numerical solution with required
accuracy (error). For an efficient solution, in an ideal case, the
task spatial structure should be directly mapped into the
corresponding computing-communication structure, which is
possible for dedicated hardware implementation or its prototyping
with FPGA for embedded control applications. We focus on the
connection mesh obtained using Moore’s [9] for considerably
better approximation (as a fourth degree compared to the second
degree depending on the finite difference mesh step size).

Composing SN data-flow programs, we considered the integer
number approximation of the iteration technique that represents,
in essence, a cellular automaton approach. SN graphical language
has been employed as an intermediate construct to generate
Verilog code for dedicated hardware implementations or
prototyping on FPGA. For the FPGA implementation,
benchmarks and prospects of application for fast process control
have been discussed. Example applications include plane and
rocket engines, (thermo) nuclear power stations, the trajectory of
hypersonic moving objects, and other real-time high integrity
control systems.

8. REFERENCES

[1] Gardner, C. L. Applied Numerical Methods for Partial
Differential Equations, Springer Nature Switzerland, 2024.

[2] Samarskii, A. A. Theory of Difference Schemes, Taylor &
Francis Group, 2001.

[3] Strikwerda, J. Finite Difference Schemes and Partial
Differential Equations, Society for Industrial Mathematics,
2007.

0

2000

4000

0.01 0.001 0.0001

[4] Adam Taylor, Dan Binnun, Saket Srivastava. A Hands-On
Guide to Designing Embedded Systems, Artech House, 2021.

[5] Principles and Structures of FPGAs, Hideharu Amano, ed.,
Springer, 2018.

[6] Joseph Cavanagh. Verilog HDL: Digital Design and
Modeling, CRC Press, 2017.

[7] Dmitry A. Zaitsev. Sleptsov Nets Run Fast, IEEE
Transactions on Systems, Man, and Cybernetics: Systems
46(5), 682–693.

[8] A.I. Sleptsov, A.A. Yurasov. Computer-Aided Design of
Flexible Computer-Aided Manufacturing Systems, Tekhnika,
Kiev, 1986.

[9] J. Kari. Theory of cellular automata: a survey, Theoret.
Comput. Sci. 334 (2005) 3–33.

[10] Tadao T. Murata. Petri Nets: Properties, Analysis and
Applications, Proc. of the IEEE 77(4), 541-580 (1989).

[11] Dmitry A. Zaitsev. Strong Sleptsov nets are Turing complete,
Information Sciences, Vol. 621, 2023, 172-182.

[12] S. Gill. Parallel Programming, The Computer Journal 1 (1)
(1958) 2–10, https://doi.org/10.1093/comjnl/1.1.2.

[13] C.A. Petri, Kommunication mit Automaten, Technischen
Hoschule Darmstadt, 1962, Ph.D. thesis.

[14] A. Alhazov, S. Verlan. Minimization strategies for
maximally parallel multiset rewriting systems, Theoretical
Computer Science 412 (17) (2011) 1581-1591,

[15] Dmitry A. Zaitsev, Anatoly I. Sleptsov. State equations and
equivalent transformations for timed petri nets, Cybern. Syst.
Anal. 33 (1997) 659–672.

[16] A.A. Kostikov, N.D. Zaitsev, O.V. Subotin. Realisation of
the double sweep method by using a Sleptsov net, Int. J.
Parallel, Emergent Distributed Systems 36 (6) (2021) 516–
534.

[17] Dmitry Zaitsev. Sleptsov Net Computing resolves problems
of modern supercomputing revealed by Jack Dongarra in his
Turing Award talk in November 2022, International Journal
of Parallel, Emergent and Distributed Systems, 2023.

[18] Dmitry A. Zaitsev, Tatiana R. Shmeleva, Qing Zhang, and
Hongfei Zhao. Virtual Machine and Integrated Developer
Environment for Sleptsov Net Computing, Parallel Processing
Letters, Vol. 33, No. 03, 2350006, 2023.

[19] Ruiyao Xu, Si Zhang, Ding Liu, and Dmitry A. Zaitsev.
Sleptsov net based reliable embedded system design on
microcontrollers and FPGAs, Proc. of 2024 IEEE
International Conference on Embedded Software and
Systems (ICESS), Wuhan, China, Dec. 13-15, 2024.

[20] R. Baxter et al. Maxwell - a 64 FPGA Supercomputer,
Second NASA/ESA Conference on Adaptive Hardware and
Systems (AHS 2007), Edinburgh, UK, 2007, pp. 287-294.

[21] Berthomieu, B., O.-P. Ribet, and F. Vernadat. The tool TINA
– construction of abstract state spaces for Petri nets and time
Petri nets, Int. J. Prod. Res. 42(4), 2741–2756 (2004).

