

A TOOLBOX FOR

FUZZY LOGIC FUNCTIONS SYNTHESIS ON A CHOICE TABLE

Dmitry A. Zaitsev

Computer Science Department

Vistula University

st. Stoklosy, 3

Warsaw 02-787, Poland

E-mail: daze@acm.org

KEYWORDS

Fuzzy logic function; choice table; synthesis; constituent of

maximum; disjunctive normal form; partitioning

ABSTRACT

A toolbox for fuzzy logic functions synthesis on a choice table,

available for free download on GitHub, has been implemented

in C language. The early published method of a continuous

(fuzzy) logic function synthesis on a choice table has been

adjusted for fast partitioning the source choice table with a set

of fuzzy logic functions. The toolbox implements a command

line style of programming using data located in textual files of

simple intuitive formats. The toolbox can process big data

rapidly and can be easily integrated into fuzzy logic frameworks

as a synthesis engine for developing graphical environment of

fuzzy (control) systems design. Formal aspects of optimality

(minimalism) are directions for future research.

INTRODUCTION

Fuzzy sets and fuzzy logic find wide application in

intelligent and control systems design (Kaufmann 1977;

Kandel 1986; Novak et al 2016). Since a fuzzy logic

function (FLF) of Zadeh (Zadeh 1965) takes value of one

of its arguments or a negation of an argument, the function

can be given by a choice table (CT) (Volgin and Levin

1990) where all the variants of ordering of arguments and

their negations are listed and for each variant the function

value is pointed out. Without loss of generality, we

suppose that an FLF is represented in disjunctive normal

form (DNF). The choice table is considered as an analog

to the truth table of the conventional binary logic (Kleene

1967) because it gives a simple way to compare FLFs via

building and comparing their CTs. However, not any

choice table defines a (single) fuzzy logic function; a table

can be partitioned and covered by a set of fuzzy logic

functions valid on subdomains (Zaitsev et al 1998). Topics

of fuzzy logic synthesis from the behavioral description

have been studied in (Wielgus 2004).

In (Zaitsev et al 1998), a criterion to tell whether a given

choice table defines a fuzzy logic function has been

introduced and an algorithm of a fuzzy logic function

synthesis has been constructed. The total time complexity

of the algorithm is linear in the table length. However, the

calculation of the criterion is square in time with respect to

the table length. In case a table does not define a fuzzy

logic function, a sophisticated procedure is stipulated to

find subsets of the table rows which are not mutually

overlapped. The time complexity of this procedure can be

rather great taking into consideration that the table length

is an exponent in the number of the function arguments.

Fuzzy logic operations enter the state equation of Petri

nets with multichannel transitions (Zaitsev and Sleptsov

1997) which have been recently applied as a concurrent

programming language (Zaitsev and Jurjens 2016).

Colored Petri nets (Zaitsev and Shmeleva 2006) use

similar concepts; their recent application for modeling

grid structures (Zaitsev et al 2016), based on a substrate

(Shmeleva et al 2009), revealed complex deadlocks.

The present work introduces a simple heuristic technique

which accomplishes the results of (Zaitsev et al 1998)

regarding partitioning a given choice table into a set of

subdomains (subsets of the table rows) and synthesizing a

separate fuzzy logic function for each partition. The total

time complexity of the technique is linear in the number

of the table rows. A toolbox, available for free download

on GitHub, has been developed; it contains the following

tools: synthesize a DNF on a choice table; create a choice

table on a DNF; check whether two functions/tables

coincide; partition a choice table into subdomains supplied

with a set of DNFs valid for each subdomain; generate a

random choice table. The partitioning technique has been

justified statistically on sets of random choice tables. The

formal aspects of optimality (minimalism) are left beyond

the scope of the present paper as a direction for future

research.

BASIC CONCEPTS AND NOTIONS

For a domain represented with an interval of real numbers

 , operations of conjunction, disjunction, and

negation, are introduced as follows:

 ,

 ,

 ̅ ,

(1)

respectively, where .

A fuzzy logic function of arguments is a function

 obtained as a result of superposition of

operations (1) on independent variables .

Note that according to the above definition, an FLF takes

value of an argument or a negation of an argument.

For FLFs, the following basic laws of Boolean algebra

(Kleene 1967) are valid: commutative, associative,

distributive for both conjunction and disjunction,

absorption, double negation, idempotency of elements,

Kleene and de-Morgan. However, the exception of the

third law, ̅ and ̅ , is not valid. Though it

follows from (1) that ̅ , ̅ , where the

http://member.acm.org/~daze
mailto:daze@acm.org

Eurosis: 15
th

 Industrial Simulation Conference, May 31 – June 1, 2017, Polish Academy of Science, Warsaw, pp. 11-16.

central point ⁄ of the section is called a

median. Disjunctive and conjunctive normal forms (DNFs

and CNFs) are introduced same as in Boolean algebra

(Kleene 1967) with the only exception that a conjunct

(disjunct) may contain a variable and its negation. A

minimization technique for an FLF given by its DNF is

studied in (Kabecode 1981; Kandel 1986; Wielgus 2014).

To compare two given FLFs, we can compute and

compare their values on all the variants of ordering

arguments and their negations; the corresponding table is

called a choice table. In Table 1, a choice table of

function ̅ ̅ is shown. We denote areas

covering the function domain as , where

 denotes the table’s length. Fig. 1 shows the areas inside

the unit square. In the general case, areas are formed as a

result of hyperplanes ̅)

intersection inside the unit hypercube.

Table 1: A choice table of function

Number of area
Specification of

area

Value of

function

1 ̅ ̅

2 ̅ ̅

3 ̅ ̅ ̅

4 ̅ ̅ ̅

5 ̅ ̅

6 ̅ ̅

7 ̅ ̅ ̅

8 ̅ ̅ ̅

Figure 1: Areas of Table 1 inside the unit square

(2-dimensional case)

In further notations, we omit symbol of variable “x” and

consider vectors of indices. Denoting index of ̅ as – ,
we represent a sequence of indices, which specifies an

area of the domain , with a vector of elements

 ⃗ , , .

For brevity, we use negative indices as well introducing

the following notation:

 {

 ̅| |

(2)

Thus, a vector ⃗ represents a domain area specified with

 . A choice table is a set of rows

 , where the table row has the following form

 ⃗ which means that the function takes value on

the area specified by ⃗. When additional specifications are

absent, we suppose that all the areas are listed in a choice

table. Though studying a partially defined table could be

useful, especially for the minimization purposes.

For example, the choice table, shown in Table 1, is

specified as

 () ()

() () ()

() () () .

Note that a tuple ⃗ is symmetric with respect to its middle

because implies ̅ ̅; thus, only one half of vector

 ⃗, for instance the first, can be actually stored. It means

that the number of the choice tables of arguments

is defined by the number of permutations of numbers

multiplied by the number of variants for assigning signs

to each of permutations; thus,

 . (3)

Note that in examples we use functions of two arguments

which CTs contain 8 rows; for 3 arguments the number of

rows equals 48 and such examples are rather bulky; an

example of synthesizing an FLF of 3 arguments is

considered in Appendix. Asymptotically, the number of

choice tables considerably exceeds the number of FLFs

(Volgin and Levin 1990), which means that not any

choice table defines an FLF. When the order of areas

specified with vectors ⃗ is fixed, for instance same as in

Table 1, we can represent a table as a vector of

values ⃗. For example, the choice table

 does not define an FLF.

However, each choice table can be partitioned in

subdomains each of which defines an FLF (Volgin and

Levin 1990). Note that not more than areas are

required when specifying each function with a DNF

consisting of a single argument (negation of an

argument).

PARTITIONING A CHOICE TABLE WITH FUZZY

LOGIC FUNCTIONS

We adjust the method of synthesis (Zaitsev et al 1998) to

obtain a simple procedure for partitioning a given CT

with a set of FLFs represented by DNF. The paper

introduces a criterion when a given CT specifies an FLF

based on a notion of overlapping rows of the table.

Here, we extended the technique (Zaitsev et al 1998) on

partial tables and replace a formal application of the

criterion by a simple iterative procedure which consists of

the following steps:

1) Synthesize a DNF on a given table (part of table).

2) Build a CT on the obtained DNF and compare the

function values.

3) If the function values coincide then the sought FLF is

specified by the obtained DNF.

4) Otherwise proceed from the step 1) for the part of

table which contains rows where the function values

do not coincide (the “difference table”).

Eurosis: 15
th

 Industrial Simulation Conference, May 31 – June 1, 2017, Polish Academy of Science, Warsaw, pp. 11-16.

In (Zaitsev et al 1998), it was proven that if a CT defines

an FLF, then the FLF is represented with a DNF

consisting of disjunctions of constituents of maximum on

the rows of the CT, where a constituent of maximum for

a table row is equal to conjunctions of variables starting

from that which equals the function value to the last

variable, inclusive. Using the CT notation from Section 2

for a table row ⃗ , its constituents of maximum,

denoted , is calculated as

 ⋀

 (4)

Then, the synthesized DNF has the following form

 ⋁

 (5)

We leave the issues of formal minimization of FLFs

(Kabecode 1981; Kandel 1986; Wielgus 2014) beyond

the scope of the present paper only applying a simple

DNF reduction with the tautology and absorption laws

Note that a constituent length does not exceed and the

maximal table length is specified with (2). Thus, the

algorithm complexity is . Though it is

exponential in , taking into consideration (2), its

characterization as linear in the table length sounds more

optimistic.

Let us consider examples of FLFs synthesis. First, we

synthesize a function on the CT shown in Table 1.

According to (5)

 ,

where according to (4)

 ̅ ̅ ̅ ̅ ̅
 ̅ ̅ ̅ ̅ ̅

Since equals , equals , absorbs and

 , absorbs and , we obtain

 ̅ ̅ ,

that coincides with the initial expression which Table 1

has been constructed on.

Second, we synthesize an FLF (FLFs) on Table 2. We use

a hint that the table defines a set of FLF introducing the

following notation where the upper index specifies the

function number in the source CT partitioning. We

compose,

 ,

Where

 ̅ ̅ ̅ ̅

 ̅ ̅ ̅ ̅ ̅
 ̅ ̅ ̅

Since equals , equals , absorbs , ,

 , , we obtain

 ̅ ̅ .

However, a CT of
 coincides with the source CT of

function only on the areas .

For the rest of the table, where the values of
 do not

coincide with the corresponding values of , we proceed

with the same procedure composing

 .

Since equals , we obtain

 ̅ ̅ ̅ ̅ .

Thus, we specify function , given by CT shown in

Table 2, as

 {

 ̅ ̅ ⃗⃗

 ̅ ̅ ̅ ̅ ⃗⃗

A TOOLBOX FOR SYNTHESIS OF FUZZY LOGIC

FUNCTIONS ON A CHOICE TABLE

Using the technique described in Section 3, a toolbox

fzy_syn has been implemented in C language and placed

for free download on GitHub. It uses the following

abbreviations: “fzy” denotes fuzzy logic, “tab” denotes a

choice table (either complete or partial), “dnf” denotes a

DNF, “syn” denotes synthesis, “cmp” denotes

comparison.

The toolbox contains the following command line tools:

 fzy_tab_syn partitions a given choice table with a
series of synthesized fuzzy logic functions (DNFs);

 fzy_tab_dnf synthesizes a fuzzy logic function (DNF)
on a given choice table;

 fzy_dnf_tab builds a choice table on a given fuzzy
logic function (DNF);

 fzy_cmp_tab_dnf compares a choice table with a
fuzzy logic function (DNF);

 fzy_gen_tab generates a random choice table for a
given number of variables.

fzy_tab_syn implements a repeated combination of

fzy_tab_dnf and fzy_cmp_tab_dnf. In the general case, a

DNF synthesized with fzy_tab_dnf satisfies only a part of

the CT. Using fzy_cmp_tab_dnf, the CT is partitioned

into two tables: the first table contains rows where DNF

coincides with the source table; the second table contains

rows where DNF does not coincide with the source table.

Then the process is repeated with the difference table

until it will be empty.

Eurosis: 15
th

 Industrial Simulation Conference, May 31 – June 1, 2017, Polish Academy of Science, Warsaw, pp. 11-16.

Table 2: A choice table of function

Number Area

1 ̅ ̅

2 ̅ ̅ ̅ ̅

3 ̅ ̅

4 ̅ ̅ ̅ ̅

5 ̅ ̅

6 ̅ ̅ ̅ ̅

7 ̅ ̅ ̅ ̅

8 ̅ ̅ ̅ ̅

On a given CT, fzy_tab_dnf builds a DNF. The CT can

be either complete or partial. A DNF is reduced with the

application of the tautology and absorption laws. It is

possible that the obtained DNF be valid for a part of the

table only. The corresponding test can be implemented

with fzy_cmp_tab_dnf.

On a given DNF of an FLF, fzy_dnf_tab builds a

complete CT. The CT contains all areas specified

with (3), where is the number of FLF arguments. When

enumerating the areas, it proceeds first with ascending

order of permutations of arguments, and second with all

the combinations of arguments with and without

negation; for a definite permutation, the ascending order

of enumerating the negations corresponds to treating an

argument without negation as a zero and an argument

with negation as a unit. Thus, we enumerate
permutations and for each permutation combinations

of negations.

On the areas of a given CT, fzy_cmp_tab_dnf compares

the function values with the values computed according

to a given DNF. The CT can be either complete or partial.

Two tables are written: the first table for the same values

of function and the second table for different values of

function taken from the source table.

fzy_gen_tab builds a complete CT with random values of

function equal to arguments and negations of arguments.

The CT specifies a complete function and contains all

 areas specified with (3), where is the number of

FLF arguments.

The toolbox implements a command line interface with

input and output data located in textual files having

special format; who types of files are supported: a file of

CT and a file of a DNF of an FLF.

Command lines to launch the tools, has the following

format:

>fzy_tab_syn tab_file result_files_prefix

>fzy_tab_dnf tab_file dnf_file

>fzy_dnf_tab dnf_file tab_file

>fzy_cmp_tab_dnf tab_file dnf_file

 comm_tab_file diff_tab_file

>fzy_gen_tab n tab_file [rand_seed]

The command line parameters are specified as follows:

 n is the number of FLF arguments;

 tab_file is a file which contains a CT either complete

or partial;

 dnf_file is a file which contains a DNF of an FLF;

 comm_tab_file contains rows of the source table

where values of the functions coincide;

 diff_tab_file contains rows of the source table where

values of the functions are different;

 result_files_prefix is a prefix to create file names of

subdomains using the following suffices: "-tab-<i>"

– a subdomain, "-dnf-<i>" – its DNF.

 rand_seed is an integer which is used as a seed to

generate random values; on default, the system time

is used as a seed.

Let us specify formats of files. A choice table file has the

following format:

FZYTAB n

...

FZYTABEND [(L rows)]

Where:

 "FZYTAB" is a label of the table file beginning;

 is the number of arguments;

 is the number of table rows;

 "FZYTABEND" is a label of the table file end;

 is the current area ();

 is the function value on the current area.

The current area is specified as follows:

 ::

where the values range is

 .

The term defines -th item in the list which equals

to
 if and equals to the negation ̅| | if .

An example of the choice table file (f1_tab) for the

function (according to Table 1) follows:

FZYTAB 2

 1 2 -2 -1 2

 1 -2 2 -1 2

-1 2 -2 1 -2

-1 -2 2 1 -2

 2 1 -1 -2 1

 2 -1 1 -2 1

-2 1 -1 2 -1

-2 -1 1 2 -1

FZYTABEND (8 rows)

A DNF file has the following format:

FZYDNF n

...

FZYDNFEND [(L conjuncts)]

Where:

Eurosis: 15
th

 Industrial Simulation Conference, May 31 – June 1, 2017, Polish Academy of Science, Warsaw, pp. 11-16.

 "FZYDNF" is a label of the DNF file beginning;

 is the number of arguments;

 is the number of conjuncts;

 "FZYDNFEND" is a label of the DNF file end;

 is the current conjunct ().

The current conjunct is specified as follows:

 ::

where the values range is

 ;

 is the number of items (variables and negations of

variables) in the current conjunct ; the term defines

 -th item in the list which equals to
 if and

equals to the negation ̅| | if .

An example of the DNF file (f1_dnf) for the function

follows:

FZYDNF 2

1 -2

-1 2

FZYDNFEND (2 conjuncts)

RUNNING TOOLS AND ANALYSING RESULTS

Let us consider examples of command lines. Suppose the

source data file f1_dnf specifying DNF of has been

created by hand in a text editor. The command line

>fzy_dnf_tab f1_dnf f1_tab

creates a CT of on its DNF file f1_dnf and saves the

resulting CT in file f1_tab. We can check visually that it

coincides with the table file shown above.

Suppose the source data file f2_tab specifying CT of

has been created by hand in a text editor. The command

line

>fzy_tab_dnf f2_tab f2_1_dnf

synthesizes a DNF file f2_1_dnf on the CT file f2_tab.

The obtained DNF file f2_1_dnf follows:

FZYDNF 2

-1

2 -2 1

FZYDNFEND (2 conjuncts)

The command line

>fzy_cmp_tab_dnf f2_tab f2_1_dnf

f2_tab_comm f2_tab_diff

compares a function given by CT file f2_tab with an FLF

given by DNF file f2_1_dnf, writes the coinciding rows

to the file f2_tab_comm, and writes the different rows to

the file f2_tab_diff with the function values according to

the source CT file (f2_tab). The obtained difference file

f2_tab_diff follows:

FZYTAB 2

 1 2 -2 -1 2

 2 1 -1 -2 1

-2 1 -1 2 -2

FZYTABEND (3 rows)

It is not empty; consequently is not an FLF. The

obtained coinciding part of the CT represented with the

file f2_tab_comm follows:

FZYTAB 2

 1 -2 2 -1 -1

-1 2 -2 1 2

-1 -2 2 1 -2

 2 -1 1 -2 -1

-2 -1 1 2 -1

FZYTABEND (5 rows)

In fact it contains the rows where the function

specified with f2_1_dnf represents the source function .

Then, we can synthesize a DNF for the difference file

with

>fzy_tab_dnf f2_tab_diff f2_2_dnf

to obtain the second DNF file f2_2_dnf to cover the

source CT of :

FZYDNF 2

2 -2 -1

1 -1 -2

FZYDNFEND (2 conjuncts)

However, it is more convenient to use fzy_tab_syn which

partitions the source CT automatically. The command

line

>fzy_tab_syn f2_tab f2_syn

partitions the source CT f2_tab into subdomains and

synthesizes an FLF represented with a DNF for each

subdomain. The following files are created: f2_syn-tab-0,

f2_syn-dnf-0 and f2_syn-tab-1, f2_syn-dnf-1 specifying

the obtained partitioning. File f2_syn-tab-0 coincides

with the above f2_tab_comm and f2_syn-dnf-0 coincides

with the above f2_1_dnf. File f2_syn-tab-1 coincides

with the above f2_tab_diff and f2_syn-dnf-1 coincides

with the above f2_2_dnf.

To try the toolbox on big random data we use

fzy_gen_tab to create random CTs of specified number of

arguments. The command line

>fzy_gen_tab 6 F3_rand_tab

creates a CT of a function of 6 arguments with random

values.

CONCLUSIONS

A toolbox for synthesis of fuzzy logic functions on a

choice table has been implemented in C language; it is

available for free download on GitHub. The method

Eurosis: 15
th

 Industrial Simulation Conference, May 31 – June 1, 2017, Polish Academy of Science, Warsaw, pp. 11-16.

described in (Zaitsev et al 1998) has been adjusted for

fast partitioning the source choice table with a set of

fuzzy logic functions. No formal minimization of fuzzy

logic functions has been implemented though the DNF

transformation using the tautology and absorption laws

allows its considerable reduction. Formal aspects of

optimality (minimalism) are a direction for future

research.

The toolbox implements a command line style of

programming using data located in textual files of simple

intuitive formats. Though it lacks graphical user interface,

the toolbox can process rather big data fast. One more

benefit is possibility of its easy integration into fuzzy

logic frameworks. Thus the toolbox can be used as a

synthesis engine to develop graphical systems for fuzzy

(control) systems design.

REFERENCES

Kabekode, V.S.B. 1981. “Minimization of disjunctive normal

forms of fuzzy logic functions”. Journal of the Franklin

Institute, 311(3), 171-185.

Kandel, A. 1986. Fuzzy Mathematical Techniques with

Applications. Addison-Wesley.

Kaufmann, A. 1977. Introduction a la theorie des sous-

ensembles flous. Masson.

Kleene, S.C. 1967. Mathematical Logic. Wiley.

Novak, V,; I. Perfilieva; and A. Dvorak. 2016. Insight into

Fuzzy Modeling. Wiley.

Shmeleva, T.R.; Zaitsev, D.A.; and Zaitsev, I.D. 2009.

“Verification of square communication grid protocols via

infinite Petri nets”. In Proceedings of 10th Middle Eastern

Simulation Multiconference, 53-59.

Volgin, L.I. and V.I. Levin. 1990. Continuous Logic. Theory

and Applications. Tallinn, AS of Estonia.

Wielgus, A. 2014. "Heuristic algorithm of two-level

minimization of fuzzy logic functions", In Proceedings of

17th International Symposium on Design and Diagnostics of

Electronic Circuits & Systems, 302-305.

Wielgus, A. 2004. "Algorithms of multilevel synthesis of fuzzy

functions", In Proceedings of IEEE International

Conference on Fuzzy Systems, 929-934.

Zadeh, L.A. 1965. "Fuzzy sets", Information and Control, 8(3),

338-353.

Zaitsev, D.A.; T.R. Shmeleva; W. Retschitzegger; and B. Proell.

2016. “Security of grid structures under disguised traffic

attacks”. Cluster Computing, 19(3), 1183-1200.

Zaitsev, D.A. and J. Jurjens. 2016. “Programming in the

Sleptsov net language for systems contro”. Advances in

Mechanical Engineering, 8(4), 1–11.

Zaitsev, D.A. and T.R. Shmeleva. 2006. “Switched Ethernet

Response Time Evaluation via Colored Petri Net Model”.

In Proceedings of International Middle Eastern

Multiconference on Simulation and Modelling, Alexandria,

Egypt. 68-77.

Zaitsev, D.A.; V.G. Sarbei; anf A.I. Sleptsov. 1998. “Synthesis

of continuous-valued logic functions defined in tabular

form”. Cybernetics and Systems Analysis, 34(2), 1998,

190–195.

Zaitsev, D.A. and A.I. Sleptsov. 1997. “State equations and

equivalent transformations for timed Petri nets”.

Cybernetics and Systems Analysis, 33(5), 659-672

WEB REFERENCES

github.com/dazeorgacm/fzy_syn

APPENDIX: AN EXAMPLE OF SYNTHESIS OF

AN FLF OF 3 ARGUMENTS

A given CT file (f3_tab):
 FZYTAB 3

 1 2 3 -3 -2 -1 -2

 1 2 -3 3 -2 -1 -2

 1 -2 3 -3 2 -1 -3

 1 -2 -3 3 2 -1 3

-1 2 3 -3 -2 1 -3

-1 2 -3 3 -2 1 3

-1 -2 3 -3 2 1 2

-1 -2 -3 3 2 1 2

 1 3 2 -2 -3 -1 -3

 1 3 -2 2 -3 -1 -3

 1 -3 2 -2 3 -1 -2

 1 -3 -2 2 3 -1 2

-1 3 2 -2 -3 1 -2

-1 3 -2 2 -3 1 2

-1 -3 2 -2 3 1 3

-1 -3 -2 2 3 1 3

 2 1 3 -3 -1 -2 -1

 2 1 -3 3 -1 -2 -1

 2 -1 3 -3 1 -2 -3

 2 -1 -3 3 1 -2 3

-2 1 3 -3 -1 2 -3

-2 1 -3 3 -1 2 3

-2 -1 3 -3 1 2 1

-2 -1 -3 3 1 2 1

 2 3 1 -1 -3 -2 -3

 2 3 -1 1 -3 -2 -3

 2 -3 1 -1 3 -2 -1

 2 -3 -1 1 3 -2 1

-2 3 1 -1 -3 2 -1

-2 3 -1 1 -3 2 1

-2 -3 1 -1 3 2 3

-2 -3 -1 1 3 2 3

 3 1 2 -2 -1 -3 -1

 3 1 -2 2 -1 -3 -1

 3 -1 2 -2 1 -3 -2

 3 -1 -2 2 1 -3 2

-3 1 2 -2 -1 3 -2

-3 1 -2 2 -1 3 2

-3 -1 2 -2 1 3 1

-3 -1 -2 2 1 3 1

 3 2 1 -1 -2 -3 -2

 3 2 -1 1 -2 -3 -2

 3 -2 1 -1 2 -3 -1

 3 -2 -1 1 2 -3 1

-3 2 1 -1 -2 3 -1

-3 2 -1 1 -2 3 1

-3 -2 1 -1 2 3 2

-3 -2 -1 1 2 3 2

FZYTABEND (48 rows)

A command line:
>fzy_tab_dnf f3_tab f3_dnf

The obtained DNF file (f3_dnf):

FZYDNF 3

-2 -1

2 1

-3 -1

3 1

-3 -2

3 2

FZYDNFEND (6 conjuncts)

The obtained FLF:

 ̅ ̅ ̅ ̅ ̅ ̅

http://github.com/dazeorgacm/fzy_syn

