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Discrete-Event System (DES)

* A discrete event system is a dynamic system with discrete states,
the transitions of which are triggered by events; its state evolution
depends entirely on the occurrence of asynchronous discrete
events over time.

* Two key features of a discrete event system are: i) its dynamics is
event driven as opposed to time driven, i.e. the behaviour of a
discrete event system is governed only by occurrences of different
types of events over time rather than by ticks of a clock; and ii) its
state variables belong to a discrete (not necessarily finite) set.

e Deterministic and stochastic event-based models.
* Discrete state and discrete time (sequence of steps).
e Simulation: time driven vs event driven.



Examples of DESs

* Formal DES systems:
* Finite automata
* Cellular automata
* Communicating Sequential Processes (CSP)
* Labelled transition system
* Place-transition net — Petri net

* Informal DES systems:
* Manufacturing systems
* Traffic control systems
* Legal systems



Sleptsov Net (SN)

* Bipartite directed graph — place-transition net

* Generalizes a Petri net for multiple firing a transition at a step

* Vertices: places (circles, ovals) and transitions (bars, rectangles)
* Tokens (dots, numbers) inside places — a marking of net

* Weight (multiplicity) of arcs — numbers inscribed on arcs

* Marking changes as a result of transition firing

* Turing-complete system

* https://dimazaitsev.github.io/snc.html
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Sleptsov Net — Multiple Firing
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Inhibitor Priority Sleptsov Net

N = (P, T,A, R, )
Places p € P
Transitions £t € 1’
AI’CSAIPXT-?ZEOU{—I}?TXP—IPZEO
Transition priority arcs R : T x T, RT is a strict partial order

Marking p : P — Z>
e A(p,t) =0, A(t,p) = 0 no arc;
e A(p,t) >0, A(t,p) > 0 regular arc of specified multiplicity;

e A(p,t) = —1 inhibitor arc.



Transition Firing Rule

Firing multiplicity of arc:
c(p,t) = {0, A(p,t) = =1 A pu(p) > 0,

Firing multiplicity of transition:

t) = ] (p.T)).
c(t) Ag}g)l;ﬂ(t(p, )

Firing transition choice:
(c(t)>0)A(Vte T, t#t,c(t)>0:(t,t')¢ R").

Next marking:

W (p) = w7 (p) — 7 (¥)-Alp,t) + " ()-At.p), p€ P.



Simulation vs State Space

* State Space - specification of all valid states and all valid traces

* Simulation — a single, possibly very long, valid trace of firing
transitions; just a valid path within State Space

* Simulation of a DES — a sequential process —a sequence of steps
— a potential obstacle to implement on mass-parallel systems

* Composing State Space —fire all transitions, firable in the current
state — employs mass-parallel system without bootlenecks

* An obstacle — possible infinite State Space - restricted finite
constructs — graph of coverable markings for an SN/PN



Simulation as Computation

* Turing-Complete DES computes
* Alternative traces are possible

* Composition rules of SN program preserve invariance of the
obtained result with respect to a valid trace

e WWe can run a trace which is easier to follow —the first fireable
transition instead of random choice at a step

* Sleptsov Net Computing (SNC): graphical SN language for
concurrent programming; purity — no textual info save comments

* Refs for SNC: https://dimazaitsev.github.io/snc.html
* SN simulator = SN Virtual Machine (VM)
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SNs for Addition and Multiplication
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Developed tools

* SN VMs for HPC — multicore CPUs and GPUs - and embedded
systems — microcontrollers

* SN state space generator for GPU
* SN compiler to FPGA for embedded systems

» Synchronous SN compilerto FPGA - integer approximation
solver of PDE for embedded systems

* Linker of high-level SNs
* Open access: https://github.com/dimazaitsev/SNCtools

* Using modelling system Tina, LAAS, France for drawing and
verification of SN programs: https://projects.laas.fr/tina/index.php
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How to run essentially sequential system
on a mass-parallel computing device?

* Mass-parallel implementation of a step

* |t seems that using up to |P| X |T| threads, we canrun a stepin a
constant time 0(1)

* Intrinsically sequential operations — binary operations (min) and
sequential choice restrict us to the logarithmic complexity
* Merging the source steps, firing a few fireable transitions at a step
* Works directly for conflict-free nets only

* For spatial SNs on multidimensional lattices — speed-up is times
the lattice size



SN Step Algorithm

* Matrix representation of SN: B—-m X n matrix of incoming arcs of
transitions, D —m X n matrix of outgoing arcs of transitions, yu — m-
vector of current marking, m — number of places, n — number of
transitions

* SN step algorithm:
* For anincoming (regular) arc of a transition: Yot = :up/bp,t
* For a transition: z; = miny, ;
p

* <Filter vector c on priority lattice — for priority nets>
* Choose a firable transition: f,z¢ > 0
* Fire transition f:

,uﬁ‘“ =,u{‘ _Zf . bi,j +Zf . di,iji,j >0 A di,j > ()



Sparse Matrix with

Condensed
Columns (MCC)

* Convenient for GPU processing

* m X nmatrix Ais represented by a
pair of mm X n matrices:

e A index—-nonzero element indexin
the source matrix

* A value - nonzero element value

 mm —-the number of nonzero
elements over columns of A

* Comparably low overhead
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Mass-Parallel Algorithm Notation

V.

t

y[p][t] = m_fire(p,t);

t

z[t] = RED_min(y,t)

t

(ft,fc) =RED_seq_choice(z,t)

P

mu(p) = new_mu(mu,ft,fc)

Priority filtering is
omitted at a step
Transitions are
preliminarily
reordered in the
descending order
of priorities

At a step, the first
firable transition
choice
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DES simulation time complexity depends
upon who runs DES

* A conventional (sequential) algorithm: O(k - m - n)
improved to O(k - mm - n) for sparse matrices

* A Universal Sleptsov Net: polynomialin k
* A mass-parallel algorithm: O(k - (logmm + logn))
* A zero universal SN: SN runs itself

* SN is implemented in hardware — compiled to Verilog and
run on FPGA: O(k - (mm + n)) improved to
O(k- (logmm + logn))




Benchmark SNs: Double exponent after Lipton




Benchmark SNs
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Speed-ups compare to (Shmeleva et al)

Speed-ups compare to (Shmeleva et al) on GPU

Benchmarks

Benchmark Double Exponent after Lipton
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Speed-ups compare to (Shmeleva et al) on GPU

Benchmark Matrix Multiplication
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(b) matrix multiplication on GPU.
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NVIDIA GPU is a clumsy device to handle

* Claimed 6D lattice of threads is considerably restricted actually
* Organized as a 3D grid of 3D blocks of threads

* Maximal grid size does not mean parallel execution of all threads; they
are processed sequentially by available Streaming Multiprocessors

* Block size is limited (1024 in a sum of 3D)

* Performance considerably depends on using the block warp structure
(a bunch of 32 threads)

* In general, synchronization is provided within a block

* Global synchronization over the grid with Cooperative Groups has
reduced scalability limited by the actual number of Streaming
Multiprocessors

* Modern and future multicore CPUs represent a good competitor



Is the maximal firing strategy a remedy?

* The maximal firing strategy = synchronous net — fire the maximal
subset of fireable transitions at a step (Salwicki, Burkhard, Kotov)

* Looks like a good deal of speed-up: one step instead of many
steps

* Works perfectly for (structurally) conflict-free nets

* Applied for verification and performance evaluation of
nonnegative integer approximation of PDE running on FPGA using
finite-difference methods

* In the general case, the step timed complexity becomes
exponential in the number of fireable transitions



Sync SN Transition Firing Rule
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Sync SN to Solve Laplace Equation, #1
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Sync SN to Solve Laplace Equation, #2
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Conclusions

* Speed-up DES simulation on mass-parallel devices, e.g. GPU
* Sleptsov Net Computing: simulation as computation
* Speed-up a step using:
* Ad-hoc sparse data format — matrix with condensed columns (MCC)
* Reduction of sequential choice
* Global synchronization with GPU Cooperative Groups (limited)
* Speed-up through steps:
* The maximal firing strategy (Salwicky, Burkhard, Kotov) - fire a few
fireable transitions at a step
* Speed-up for conflict-free nets, numerical solving PDE on FPGA
* Exponential complexity of transition choice in general case
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