

https://dimazaitsev.github.io/
https://www.derby.ac.uk/staff/dmitry-zaitsev

Discrete-Event System (DES)

* A discrete event system is a dynamic system with discrete states,
the transitions of which are triggered by events; its state evolution
depends entirely on the occurrence of asynchronous discrete
events over time.

* Two key features of a discrete event system are: i) its dynamics is
event driven as opposed to time driven, i.e. the behaviour of a
discrete event system is governed only by occurrences of different
types of events over time rather than by ticks of a clock; and ii) its
state variables belong to a discrete (not necessarily finite) set.

e Deterministic and stochastic event-based models.
* Discrete state and discrete time (sequence of steps).
e Simulation: time driven vs event driven.

Examples of DESs

* Formal DES systems:
* Finite automata
* Cellular automata
* Communicating Sequential Processes (CSP)
* Labelled transition system
* Place-transition net — Petri net

* Informal DES systems:
* Manufacturing systems
* Traffic control systems
* Legal systems

Sleptsov Net (SN)

* Bipartite directed graph — place-transition net

* Generalizes a Petri net for multiple firing a transition at a step

* Vertices: places (circles, ovals) and transitions (bars, rectangles)
* Tokens (dots, numbers) inside places — a marking of net

* Weight (multiplicity) of arcs — numbers inscribed on arcs

* Marking changes as a result of transition firing

* Turing-complete system

* https://dimazaitsev.github.io/snc.html

https://dimazaitsev.github.io/snc.html

Sleptsov Net — Multiple Firing

Place-transition net

t1 t1 t1 t1 @ t1 @ @ 5“
22
Reachability graphs (19)—=(@7)

Petri net Sleptsov net

Inhibitor Priority Sleptsov Net

N = (P, T,A, R,)
Places p € P
Transitions £t € 1’
AI’CSAIPXT-?ZEOU{—I}?TXP—IPZEO
Transition priority arcs R : T x T, RT is a strict partial order

Marking p : P — Z>
e A(p,t) =0, A(t,p) = 0 no arc;
e A(p,t) >0, A(t,p) > 0 regular arc of specified multiplicity;

e A(p,t) = —1 inhibitor arc.

Transition Firing Rule

Firing multiplicity of arc:
c(p,t) = {0, A(p,t) = =1 A pu(p) > 0,

Firing multiplicity of transition:

t) =] (p.T)).
c(t) Ag}g)l;ﬂ(t(p,)

Firing transition choice:
(c(t)>0)A(Vte T, t#t,c(t)>0:(t,t')¢ R").

Next marking:

W (p) = w7 (p) — 7 (¥)-Alp,t) + " ()-At.p), p€ P.

Simulation vs State Space

* State Space - specification of all valid states and all valid traces

* Simulation — a single, possibly very long, valid trace of firing
transitions; just a valid path within State Space

* Simulation of a DES — a sequential process —a sequence of steps
— a potential obstacle to implement on mass-parallel systems

* Composing State Space —fire all transitions, firable in the current
state — employs mass-parallel system without bootlenecks

* An obstacle — possible infinite State Space - restricted finite
constructs — graph of coverable markings for an SN/PN

Simulation as Computation

* Turing-Complete DES computes
* Alternative traces are possible

* Composition rules of SN program preserve invariance of the
obtained result with respect to a valid trace

e WWe can run a trace which is easier to follow —the first fireable
transition instead of random choice at a step

* Sleptsov Net Computing (SNC): graphical SN language for
concurrent programming; purity — no textual info save comments

* Refs for SNC: https://dimazaitsev.github.io/snc.html
* SN simulator = SN Virtual Machine (VM)

https://dimazaitsev.github.io/snc.html

SNs for Addition and Multiplication

Recent Advances

* Dmitry A. Zaitsev, Tatiana R. Shmeleva, Alexander A. Kostikov,
Computing and Communication Structure Design for Fast Mass-Parallel
Numerical Solving PDE, Parallel Processing Letters, May 9, 2025.

o Zaitsev, D. A., Ajima, Y., Bartlett, J. F. C., & Kumar, A. (2025). 3D
multicore CPU vs GPU on sparse patterns of Sleptsov net virtual
machine. International Journal of Parallel, Emergent and Distributed
Systems, 1-21. Published online: 16 Apr 2025.

« Zaitsev, D. A., Zhang, Z., Liu, D., & Shmeleva, T. R. (2025). Notation for
mass parallel algorithms: computing Petri net state space on GPU case
study. International Journal of Parallel, Emergent and Distributed Systems,
40(2), 101-115.

« R.Xu, S. Zhang, D. Liu and D. A. Zaitsev, "Sleptsov net based reliable
embedded system design on microcontrollers and FPGAs," 2024 |EEE
International Conference on Embedded Software and Systems (ICESS),
Wuhan, China, 2024, pp. 1-8.

https://doi.org/10.1142/S0129626425500045
https://doi.org/10.1080/17445760.2025.2490148
https://doi.org/10.1080/17445760.2025.2490148
https://doi.org/10.1080/17445760.2024.2431545
https://doi.org/10.1080/17445760.2024.2431545
https://doi.org/10.1109/ICESS64277.2024.00011
https://doi.org/10.1109/ICESS64277.2024.00011
https://doi.org/10.1109/ICESS64277.2024.00011

Developed tools

* SN VMs for HPC — multicore CPUs and GPUs - and embedded
systems — microcontrollers

* SN state space generator for GPU
* SN compiler to FPGA for embedded systems

» Synchronous SN compilerto FPGA - integer approximation
solver of PDE for embedded systems

* Linker of high-level SNs
* Open access: https://github.com/dimazaitsev/SNCtools

* Using modelling system Tina, LAAS, France for drawing and
verification of SN programs: https://projects.laas.fr/tina/index.php

https://github.com/dimazaitsev/SNCtools
https://projects.laas.fr/tina/index.php

How to run essentially sequential system
on a mass-parallel computing device?

* Mass-parallel implementation of a step

* |t seems that using up to |P| X |T| threads, we canrun a stepin a
constant time 0(1)

* Intrinsically sequential operations — binary operations (min) and
sequential choice restrict us to the logarithmic complexity
* Merging the source steps, firing a few fireable transitions at a step
* Works directly for conflict-free nets only

* For spatial SNs on multidimensional lattices — speed-up is times
the lattice size

SN Step Algorithm

* Matrix representation of SN: B—-m X n matrix of incoming arcs of
transitions, D —m X n matrix of outgoing arcs of transitions, yu — m-
vector of current marking, m — number of places, n — number of
transitions

* SN step algorithm:
* For anincoming (regular) arc of a transition: Yot = :up/bp,t
* For a transition: z; = miny, ;
p

* <Filter vector c on priority lattice — for priority nets>
* Choose a firable transition: f,z¢ > 0
* Fire transition f:

,uﬁ‘“ =,u{‘ _Zf . bi,j +Zf . di,iji,j >0 A di,j > ()

Sparse Matrix with

Condensed
Columns (MCC)

* Convenient for GPU processing

* m X nmatrix Ais represented by a
pair of mm X n matrices:

e A index—-nonzero element indexin
the source matrix

* A value - nonzero element value

 mm —-the number of nonzero
elements over columns of A

* Comparably low overhead

>

10

1

0 1 4 | 3 -1
Y-l 4 4

2 5 -1 1

: 2 2

4 3 2 -1
°'3 2

° -1 2 4
7 1 3
8 2 4 -1

5 3 -1
A_index:

0 1 2 3 4 5 6 7 8 9 10 11
°1/0(83|1|4 |43 |-1]2|4]|-1]|-1
'"5/0(9 /67|52 2|0|-1|1]4
’9/0|0|8|0|0|9 (4|0 ,0]|2]3

A_value:

0 1 2 3 4 5 6 7 8 9 10 11
l-1(11(2 43|43 |-1]2|4]-1]|-1
131031252 201|114
‘5002|002 4]0]|]0]|2]3

Mass-Parallel Algorithm Notation

V.

t

y[p][t] = m_fire(p,t);

t

z[t] = RED_min(y,t)

t

(ft,fc) =RED_seq_choice(z,t)

P

mu(p) = new_mu(mu,ft,fc)

Priority filtering is
omitted at a step
Transitions are
preliminarily
reordered in the
descending order
of priorities

At a step, the first
firable transition
choice

Best
case

O,

O
©

©_©
©

OO
O

Average
case
Worst
case

@/.0 @/.0
3 Sk
do o
3 Sl

99109 jenuanbag
JO Uoionpay

DES simulation time complexity depends
upon who runs DES

* A conventional (sequential) algorithm: O(k - m - n)
improved to O(k - mm - n) for sparse matrices

* A Universal Sleptsov Net: polynomialin k
* A mass-parallel algorithm: O(k - (logmm + logn))
* A zero universal SN: SN runs itself

* SN is implemented in hardware — compiled to Verilog and
run on FPGA: O(k - (mm + n)) improved to
O(k- (logmm + logn))

Benchmark SNs: Double exponent after Lipton

Benchmark SNs

Matrix

Multiplication

*HSN(mul.lsn i p18

@ ©® O 6 6 Q ()

*HSN(mul.Ts

P 20p204sp14“

*HSN(mul.lsn i p10 1

4

opl24spa3fp55)

— () « .

@)
p711p820op34sp33fpa5

*HSN(mul.lsn i p21 1

\u_, *HSN(add.Isn i p9 1ip12 2 o p1

b p2345p1531p165)

Cr
*HSN(mul.lsm-p29-+Tp30 2 0 p31 4 s p25 3 f p26

O (—
“HSN(mul.I 0#1p4120pa24sp3631p

sS4

(o)< < () -
5 M—l
; U *HSN(add.Isn i p20 1 p23 2 0 pq

© p34 4 s p26 3 f p27 5)

6 p45 4 s p37 31 p38 5)

*HSN(add.lsn | p42 1§ p45 2 0 p46 3 s p38 4 T p39 5)

Speed-ups compare to (Shmeleva et al)

Speed-ups compare to (Shmeleva et al) on GPU

Benchmarks

Benchmark Double Exponent after Lipton

2.5 1

Size

m reduction
N coop group

(a) double exponent on GPU;

Benchmark Double Exponent after Lipton

801

70

60

201

10

Size

EE cpu
E omp

(¢) double exponent on CPU;

Speed-ups compare to (Shmeleva et al)

Speed-ups compare to (Shmeleva et al) on GPU

Benchmark Matrix Multiplication

Em reduction
EEE coop group

(b) matrix multiplication on GPU.

Benchmark Matrix Multiplication

17.5 A

15.0 A

10.0 A

7.5 1

5.0

2.5

0.0 4

Size

(d) matrix multiplication on CPU.

Benchmark Double Exponent after Lipton

N cpu
204
151
10 4
S 4
0_
3 4
Size

(e) double exponent on CPU vs GPU;

[
wn
n

speed-ups compared to gpu

Benchmark Matrix Multiplication

EE cpu
0.7
0.6 -
0.5 1
0.4
0.3 4
0.2 A
- l
0.0-
5 6 7 10
Size

(f) matrix multiplication on CPU vs GPU.

Speed-ups compare to gpu

NVIDIA GPU is a clumsy device to handle

* Claimed 6D lattice of threads is considerably restricted actually
* Organized as a 3D grid of 3D blocks of threads

* Maximal grid size does not mean parallel execution of all threads; they
are processed sequentially by available Streaming Multiprocessors

* Block size is limited (1024 in a sum of 3D)

* Performance considerably depends on using the block warp structure
(a bunch of 32 threads)

* In general, synchronization is provided within a block

* Global synchronization over the grid with Cooperative Groups has
reduced scalability limited by the actual number of Streaming
Multiprocessors

* Modern and future multicore CPUs represent a good competitor

Is the maximal firing strategy a remedy?

* The maximal firing strategy = synchronous net — fire the maximal
subset of fireable transitions at a step (Salwicki, Burkhard, Kotov)

* Looks like a good deal of speed-up: one step instead of many
steps

* Works perfectly for (structurally) conflict-free nets

* Applied for verification and performance evaluation of
nonnegative integer approximation of PDE running on FPGA using
finite-difference methods

* In the general case, the step timed complexity becomes
exponential in the number of fireable transitions

Sync SN Transition Firing Rule

£3

¥
O—h i1
s
Z=(Lx+ Iy)4 y
f’l
O_. 2

C(p,t) = ulp)/A(p,t)

C(t) = min C(p,t)

A(p,t)>0

3

204 Iy

O
‘ ':D'F | -0

z=(2%43y)4 o~ Z={2x+3y)d

Firing multiplicity of arc

Firing multiplicity of transition

u@)**t = up)* - z C(t)-A(p,t) + Z C(t)-A(p,t) Next marking

A(p,t)>0

A(t,p)>0

Sync SN to Solve Laplace Equation, #1

u 0.3 u 13

4l 14
y
t_1.3
u 02 ut2
100
4
4|4
t 1.2

u_0.0 u_1.0

u22

u21

u_23

t_2.3

t 2.1

u_2.0

100

u_33

O

u_32

t_3.2

u_31

u 03 u13 u23

t_1.3 t_2.3

u_33

u_3z2

Sync SN to Solve Laplace Equation, #2

u 03 u13 u23 u33 w03 u13 u_23 u_33
4 4 4 4 4 4 4 4
¢ ¢ 4 ¢
t 13 t 2.3 t 13 t 2.3
u 02 u_12 u22 u_3z2 u 02 u_12 u22 u_32
100 23 23 100 27 16
4 4 4 4 4 4 4 4 4 4
t 3.2 t_3.2
u21 u_31 u_1,1 u_21 u_31
39 27 38 27
4 al |4 4 4 4 |4
y y
t 3.1 t 31
u_10 u_20 u_3,0 u_1.0 u 20 u_3.0

100 100 O 100 100 O

Conclusions

* Speed-up DES simulation on mass-parallel devices, e.g. GPU
* Sleptsov Net Computing: simulation as computation
* Speed-up a step using:
* Ad-hoc sparse data format — matrix with condensed columns (MCC)
* Reduction of sequential choice
* Global synchronization with GPU Cooperative Groups (limited)
* Speed-up through steps:
* The maximal firing strategy (Salwicky, Burkhard, Kotov) - fire a few
fireable transitions at a step
* Speed-up for conflict-free nets, numerical solving PDE on FPGA
* Exponential complexity of transition choice in general case

	Slide 1: Simulating Discrete-Event Systems on HPC: Sleptsov Net Case Study
	Slide 2: Discrete-Event System (DES)
	Slide 3: Examples of DESs
	Slide 4: Sleptsov Net (SN)
	Slide 5: Sleptsov Net – Multiple Firing
	Slide 6: Inhibitor Priority Sleptsov Net
	Slide 7: Transition Firing Rule
	Slide 8: Simulation vs State Space
	Slide 9: Simulation as Computation
	Slide 10: SNs for Addition and Multiplication
	Slide 11: Recent Advances
	Slide 12: Developed tools
	Slide 13: How to run essentially sequential system on a mass-parallel computing device?
	Slide 14: SN Step Algorithm
	Slide 15: Sparse Matrix with Condensed Columns (MCC)
	Slide 16: Mass-Parallel Algorithm Notation
	Slide 17: Reduction of Sequential Choice
	Slide 18: DES simulation time complexity depends upon who runs DES
	Slide 19: Benchmark SNs: Double exponent after Lipton
	Slide 20: Benchmark SNs: Matrix Multiplication
	Slide 21: Benchmarks
	Slide 22: NVIDIA GPU is a clumsy device to handle
	Slide 23: Is the maximal firing strategy a remedy?
	Slide 24: Sync SN Transition Firing Rule
	Slide 25: Sync SN to Solve Laplace Equation, #1
	Slide 26: Sync SN to Solve Laplace Equation, #2
	Slide 27: Conclusions

