

Speed-up Solving Linear Systems on Parallel Architectures via Aggregation of Clans

Dmitry A. Zaitsev http://daze.ho.ua

System of linear algebraic equations

 $\begin{cases} 2x_1 + 5x_2 + 8x_3 = 13 \\ 3x_1 - 6x_2 + 9x_3 = 25 \\ 4x_1 + 7x_2 - 1x_3 = -7 \end{cases}$

 $x_1 \approx 0,302; \quad x_2 \approx -0,873;$

 $x_3 \approx 2,095$

Matrix representation

$$A\vec{x} = \vec{b}$$

Solution of linear systems

Homogenous: $A\vec{x} = 0, \ \vec{x} = G\vec{y}$

Heterogeneous:

$$A\vec{x} = \vec{b}, \ \vec{x} = \vec{x}' + G\vec{y}$$

G - matrix of basis solutions

Algebraic structure

Numbers	Example	Structure	Methods
Complex	-3,2+6,25i	field	a) reduction: LU, QR; б) iteration methods
Real	0,25; -78,931		
Integer	-33; 0; 6	ring	Normal forms: Hermite, Smith
Nonnegative integer	0; 7; 55	monoid	Methods of Toudic (Silva) and Contejean

Dense and sparse systems

Practical value

- Numerical methods of solving differential equations and systems and also partial differential equations and systems
- Domains: thermodynamics, weather forecast, trajectories of moving objects, fluid dynamics, nuclear physics etc
- Diophantine systems: artificial intelligence, cryptography, modelchecking etc

Real-life matrices (systems)

- Matrix Market -<u>https://math.nist.gov/MatrixMarket</u>
- The SuiteSparse Matrix Collection <u>https://sparse.tamu.edu</u>
- Model Checking Contest Petri net models <u>https://mcc.lip6.fr</u>

Basic software

Structure \ Type	Dense	Sparse
Field	LAPACK	UMFPACK
Ring	4ti2	ParAd
Monoid	4ti2	ParAd

LAPACK (Linear Algebra Package)

- <u>http://www.netlib.org/lapack</u>
- Legend of Jack Dongarra (1980) <u>http://icl.utk.edu</u>
- Most widespread package
- Most cited computer science paper
- Performance test of supercomputers <u>http://top500.org</u>

LAPACK on parallel architecture

Multicore	Distributed nodes	GPUs
OpenMP	MPI, PVM	CUDA
PLASMA	ScaLAPACK DPLASMA	MAGMA

http://icl.utk.edu

Zaitsev decomposition into clans

Divide and sway

A Clan – transitive closure of nearness relation

C1:
$$\begin{cases} -x_2 + x_3 - x_{15} + x_{18} = 0 \\ -x_2 + x_4 - x_{14} + x_{18} = 0 \\ -x_5 + x_6 - x_{16} + x_{18} = 0 \\ -x_{11} + x_{12} - x_{15} + x_{18} = 0 \\ -x_{13} + x_8 + x_{18} = 0 \end{cases}$$

Two equations are *near* if they contain the same variable having coefficients of the same sign

Decomposition into clans

$$\begin{bmatrix} -x_{1} + x_{2} - x_{18} = 0 \\ -x_{2} + x_{3} - x_{15} + x_{18} = 0 \\ -x_{2} + x_{3} - x_{15} + x_{18} = 0 \\ -x_{2} + x_{3} - x_{14} + x_{18} = 0 \\ -x_{2} + x_{4} - x_{14} + x_{18} = 0 \\ -x_{2} + x_{4} - x_{14} + x_{18} = 0 \\ -x_{5} + x_{6} - x_{14} + x_{18} = 0 \\ -x_{5} + x_{6} - x_{16} + x_{18} = 0 \\ -x_{5} + x_{6} - x_{16} + x_{18} = 0 \\ -x_{6} + x_{7} + x_{16} - x_{19} = 0 \\ -x_{8} + x_{9} - x_{19} = 0 \\ -x_{9} + x_{10} - x_{17} + x_{19} = 0 \\ -x_{10} + x_{11} + x_{17} - x_{18} = 0 \\ -x_{11} + x_{12} - x_{15} + x_{18} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{18} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{18} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{18} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{18} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{18} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{18} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{18} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{18} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{18} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{18} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{18} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{18} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{18} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{18} = 0 \\ -x_{13} + x_{8} + x_{19} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{18} = 0 \\ -x_{13} + x_{8} + x_{19} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{18} = 0 \\ -x_{13} + x_{8} + x_{19} = 0 \\ -x_{14} + x_{15} - x_{18} = 0 \\ -x_{15} + x_{10} - x_{17} + x_{19} = 0 \\ -x_{16} + x_{17} + x_{16} - x_{19} = 0 \\ -x_{18} + x_{19} - x_{19} = 0 \\ -x_{19} + x_{10} - x_{17} + x_{19} = 0 \\ -x_{19} + x_{10} - x_{17} + x_{19} = 0 \\ -x_{10} + x_{10} +$$

Systems and Directed bipartite graphs

Equation – transition (rectangle)

Variable – place (circle)

Positive sign – incoming arc of a place

Negative sign – outgoing arc of a place

Decomposition graph

C1:
$$\begin{cases} -x_{2} + x_{3} - x_{15} + x_{18} = 0 \\ -x_{2} + x_{4} - x_{14} + x_{18} = 0 \\ -x_{5} + x_{6} - x_{16} + x_{18} = 0 \\ -x_{11} + x_{12} - x_{15} + x_{18} = 0 \\ -x_{13} + x_{8} + x_{18} = 0 \\ -x_{13} + x_{8} + x_{18} = 0 \\ -x_{4} + x_{5} + x_{14} - x_{18} = 0 \\ -x_{4} + x_{5} + x_{14} - x_{18} = 0 \\ -x_{10} + x_{11} + x_{17} - x_{18} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{18} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{18} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{18} = 0 \\ -x_{10} + x_{11} + x_{17} - x_{18} = 0 \\ -x_{10} + x_{11} + x_{17} - x_{18} = 0 \\ -x_{10} + x_{10} - x_{17} + x_{19} = 0 \\ -x_{10} + x_{10} - x_{17} + x_{19} = 0 \\ -x_{9} + x_{10} - x_{17} + x_{19} = 0 \\ -x_{8} + x_{9} - x_{10} = 0 \end{cases}$$

Collapse of decomposition graph

II.

Ι.

↓ 19

Protocols of data transmission

Protocol as Petri net

Speed-up because of clans

Software

- **Deborah** decomposition into clans, 2005
- Adriana solving a homogenous system via

 (a) simultaneous or (b) sequential
 composition of clans, 2006
- Implemented as plug-ins for Tina <u>http://www.laas.fr/tina</u>
- ParAd (Parallel Adriana), 2018 <u>http://github.com/dazeorgacm/ParAd</u>

Load balancing

- Dynamic on demand appoint a clan to a free node (version 1.1)
- Static aggregate minimal clans into big clans according to the number of available computing nodes
- Hybrid pre-aggregation to equal size and then dynamic scheduling clans to nodes (version 1.2)

Aggregation idea

Decomposition of hypertorus 4D, 3x3

Aggregation by METIS into 7 clans

Extra speed-up because of aggregation

Conclusions

- Additional modules for ParAd:
- a) clans aggregation with METIS;
- b) clans aggregation with bin pack
- Extra speed-up because of aggregation up to 4 times
- Intractable tasks become tractable with clans composition on parallel architectures

Recent references

- ParAd, <u>https://github.com/dazeorgacm/ParAd</u>
- Dmitry Zaitsev, Stanimire Tomov, Jack Dongarra. Solving Linear Diophantine Systems on Parallel Architectures, IEEE Transactions on Parallel and Distributed Systems, 30(5), 2019.
- Zaitsev D.A. Sequential composition of linear systems' clans, Information Sciences, Vol. 363, 2016, 292–307.