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ABSTRACT 
Petri net model of the widely known protocol BGP of 
Internet backbone routing was constructed. The decompo-
sition of Petri net model of communication protocol BGP 
into functional subnets was implemented. Invariance of 
the source model was proved on the base of established 
invariance of its functional subnets. The speed-up of 
computations obtained is exponential with respect to di-
mension of Petri net. 
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1. INTRODUCTION 

Petri nets [1] are used successfully for the investiga-
tion of distributed systems and concurrent processes in 
different application fields [2,3]. Detailed models of real-
life objects have huge enough dimension, numbering hun-
dreds of elements. At that time, basic methods of Petri net 
properties analysis have an exponential calculation com-
plexity. It makes the analysis of real-life systems difficult. 

Models of complex systems are assembled of models 
of its components usually. Moreover, in the cases the 
composition of model out of subnets is not given, we sug-
gest to apply methods of Petri net decomposition repre-
sented in [4]. The algorithm of decomposition allows the 
partition of a given Petri net into set of its functional sub-
nets. Our decomposition differs from known approaches 
[5,6,7] in the class of components named by functional 
subnets. 

The technique the invariants of functional subnets, de-
fining partition of source Petri net, are applied for calcula-
tion of the entire Petri net invariants was studied in [8]. 
The speed-up of computations obtained is estimated with 
exponential function. Since the dimension of subnets, as a 
rule, is essentially lesser than the dimension of the entire 
net, the actual speed-up of computation may be extremely 
considerable that was confirmed by the results of this 
technique application to communication protocols analy-
sis [9,10]. 

The present paper constitutes in essence a case study 
of decomposition technique via verification of the widely 
known protocol BGP [11] of Internet backbone routing. 
Petri net model of BGP protocol constructed is simplified 
enough but it allows the accurate implementation of the 

decomposition technique. Moreover, as distinct from 
[9,10], non-minimal functional subnets are used.  

In Section 2 the brief description of BDG protocol is 
represented; in Section 3 the Petri net model of protocol is 
constructed; in Section 3 the decomposition of model into 
functional subnes is realized; in Section 5 the decomposi-
tion-based calculation of place invariants of model is im-
plemented; in Section 6 invariants of transitions are calcu-
lated on the base of decomposition of dual Petri net; in 
Section 7 the speed-up of computations is estimated and 
in Section 8 conclusions are formulated. 
 
 
2. COMMUNICATION PROTOCOL BGP 

The Border Gateway Protocol (BGP) [11] is an inter-
autonomous system routing protocol. It is the very signifi-
cant for the whole Internet operability, so the autonomous 
systems constitute a backbone of the global data ex-
change. More than thirty RFC (Requests For Comments) 
are devoted to BGP protocol specification and refinement. 
Recently the most widespread is BGP-4 [12], but the dis-
tinctions in comparison with the first standard specifica-
tion [11] are the very specific and inessential for a draft 
model construction. 

The primary function of a BGP speaking system is to 
exchange network reachability information with other 
BGP systems. This network reachability information in-
cludes information on the autonomous systems (AS's) that 
traffic must transit to reach these networks. This informa-
tion is sufficient to construct a graph of AS connectivity 
from which routing loops may be pruned and policy   de-
cisions at an AS level may be enforced. 

There are five types of standard BGP messages: 
 1 – OPEN, 
 2 – UPDATE, 
 3 – NOTIFICATION, 
 4 – KEEPALIVE, 
 5 – OPEN CONFIRM. 
After a transport protocol connection is established, 

the first message sent by either side is an OPEN message.  
If the OPEN message is acceptable, an OPEN CONFIRM 
message confirming the OPEN is sent back.  Once the 
OPEN is confirmed, UPDATE, KEEPALIVE, and NO-
TIFICATION messages may be exchanged. 

UPDATE messages are used to transfer routing infor-
mation between BGP peers.  The information in the UP-



DATE packet can be used to construct a graph describing 
the relationships of the various autonomous systems.  By 
applying rules to be discussed, routing information loops 
and some other anomalies may be detected and removed 
from the inter-AS routing. 

BGP does not use any transport protocol based 
keepalive mechanism to determine if peers are reachable. 
Instead KEEPALIVE messages are exchanged between 
peers often enough as not to cause the hold time (as adver-
tised in the BGP header) to expire. The KEEPALIVE 
message is a BGP header without any data. 

NOTIFICATION messages are sent when an error 
condition is detected. 

 
 

3. MODEL OF PROTOCOL BGP 
Petri net model of protocol BGP is represented in fig. 

1. Let’s remind, that Petri net [1] is a triple 
),,,( FTPN =  where },...,{ 1 mppP =  – finite set of 

nodes named places, },...,{ 1 nttT =  – finite set of nodes 
named transitions, flow relation PTTPF ××⊆ U  de-
fines a set of arcs connecting places and transitions. Thus, 
Petri net is directed bipartite graph; one part of nodes con-
sists of places, another – of transitions. Places are drawn 
as circles, transitions – as bars. Usually, graph N  is sup-
plemented with a marking defining an initial arrangement 
of tokens in places. Tokens are dynamic elements that 
move inside net as a result of transitions firing.  

In the general case a net with multiply arcs is consid-
ered. It contains an additional mapping Ν→FW : . Mul-
tiplicity, in a case it is distinct from unit, is pointed as a 
number w  on the corresponding arc. Flow relation and 
arcs’ multiplicities may be represented via incidence ma-
trix. Let us introduce matrices −A , +A  of input and out-
put arcs of transitions accordingly: 
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And finally, we introduce an incidence matrix A  of Petri 
net as .−+ −= AAA  

Special notations of sets of input and output nodes for 
places and transitions are introduced also:  
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Figure. 1. Petri net model of protocol BGP  
 

The model describes asymmetric interaction of two 
systems. First system is represented with places 51 pp −  
and transitions 61 tt − , second system – with places 

106 pp −  and transitions 127 tt − . Places 1411 pp −  corre-
spond to communication subsystem and model standard 
messages: OPEN, OPENCONFIRM, and KEEPALIVE. 
Notice that the model represents only procedures of con-
nection establishment and maintenance, abstracting of 
data transfer for adjustment of routing tables.  Date inter-
change is implemented in state ESTABLISHED with the 
aid of standard messages UPDATE. This process is not 
displayed in model constructed. Semantic description of 
elements of the model is represented in Table 1. 
 
 
4. DECOMPOSITION OF MODEL 

The decomposition of model into functional subnets is 
represented in fig. 2. Notice that four drawn functional 
subnets 1Z , 2Z , 3Z , 4Z , defining a partition of source 
model, are not minimal.  As the result of algorithm de-
scribed in [4] application we obtain the decomposition 
into minimal subnets induced by the subsets 

}{},{},,,{},{},{},{},,,{},{ 109121187436521 tttttttttttt . So, for 

instance, subnet 2Z  constitutes a sum of two minimal 
subnets induced by transitions 3t  and 4t  correspondingly. 
Problems of the functional subnets composition out of the 
minimal functional subnets were studied in [4]. 

Let’s remind, that the functional net [4,8] is a special 
case of net with input and output places. Functional net is 
a triple ),,,( YXNZ =  where N – is Petri net, PX ⊆  – 
input places, PY ⊆  – output places, besides sets of input 
and output places do not intersect: ∅=YX I , moreover, 
input places do not have input arcs, and output places do 



not have output arcs: ∅=∈∀ •pXp : , ∅=∈∀ •pYp : . 
Places of a set YXC U=  are named by contact, and 
places of a set )(\ YXPQ U=  are named by internal.  

 
Table 1. Description of model’s elements 

Element Description 
61, pp  Initial state of systems 

2p  Open request sent 

7p  Open request received 

83, pp  Connection established 

4p  KEEPALIVE message sent 

9p  KEEPALIVE message received 

5p  KEEPALIVE message received 

10p  KEEPALIVE message received 

11p  OPEN message 

12p  OPENCONFIRM message 

1413, pp  KEEPALIVE message 

1t  Send OPEN message 

7t  Receive OPEN message 

8t  Send OPENCONFIRM message 

2t  Receive OPENCONFIRM message 

103,tt  Send KEEPALIVE message 

94 ,tt  Receive KEEPALIVE message 

115 ,tt  Connection keep alive loop 

126 ,tt  Disconnection 
 

Functional net ),,( YXNZ ′=  is named a functional 
subnet of net N  and is denoted as NZ f  if N ′  is subnet 
of N , and, moreover, Z  is connected with the residuary 
part of the net only through the arcs incident with either 
input or output places, besides input places may have only 
input arcs and output places – only output arcs. Thus  

 
∅=′∈∈∀ }\|),{(: TTttpXp , 
∅=′∈∈∀ }\|),{(: TTtptYp , 

∅=′∈∧∅=′∈∈∀ }\|),{(}\|),{(: TTtptTTttpQ . 
 

Functional subnet is named a minimal, if it does not 
contain any other functional subnet. According to theorem 
2 proved in [4], any functional subnet Z ′  of a Petri net 
N  is a sum (union) of a finite number of minimal func-
tional subnets. Thus, a set of minimal functional subnets 
is the generating family for a set of functional subnets of a 
given Petri net N . 

Subnet ),,,()( RYQXRBZ ==  of Petri net N is a 
complete in N, iff in N the following conditions hold true: 

RX ⊆• , RY ⊆• , RQ ⊆•• . 
 

Algorithm of decomposition: 
Step 0. Choose an arbitrary transition Tt ∈ of the net N 

and include it in the set of selected transitions }{: tR = .  
Step 1. Construct subnet Z generated by the set R: 

),,,()( RYQXRBZ == . 
Step 2. If Z is the complete in N, then Z is sought sub-

net. Stop. 
Step 3. Construct the set of absorbed transitions:  

}|{ RtQtRtYtRtXttS ∉∧∈∨∉∧∈∨∉∧∈= ••••

. 
Step 4. Assign SRR U=:  and go to Step 1. 
 
As it was proven in [4]: 
− subnet Z is complete in Petri net N iff it is func-

tional subnet of N;  
− subnet Z constructed by the algorithm of decompo-

sition is minimal functional subnet of Petri net N; 
− the algorithm of decomposition has polynomial 

complexity )( 3nο , where n  is the number of 
nodes of the net. 

 
 
5. INVARIANCE OF MODEL 

Invariants [1] are a powerful tool of the structural 
properties of Petri nets analysis. It allows the determina-
tion of boundness, safeness of net, necessary conditions of 
liveness and absence of deadlocks. These properties are 
significant for real-life objects’ analysis, especially, for 
communication protocols [1-3]. 

p-invariant of Petri net [1] is a nonnegative integer so-
lution of the system  

 
 0=⋅ Ax . (1) 

 
t-invariant of Petri net is a nonnegative integer solu-

tion of the system  
 

0=⋅ TAy . 
 
As according to [1] each t-invariant of Petri net is p-

invariant of dual net, so further, not limiting the general-
ity, we shall consider p-invariants only.   

All the known methods of invariants calculation 
[13,14] have an exponential complexity. It makes the ap-
plication of these methods to real-life objects’ models, 
numbering thousands of elements, analysis difficult.  

According to theorem 2 proved in [8], Petri net N  is 
invariant iff all its minimal functional subnets are invari-
ant and, moreover, exists a common nonzero invariant of 
contact places. Therefore, to calculate invariants of a Petri 
net it is required to calculate invariants of its minimal 
functional subnets and then to find common invariants of 
contact places. It was shown, that results are true for an 
arbitrary set of functional subnets, defining a partition of 
the set of transitions of Petri net.  
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Figure. 2. Decomposition of BGP protocol model
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Let a general solution for invariant of functional sub-
net jZ  has the form  

 
 jjj Gzx ⋅= , (2) 

 
where jz  is an arbitrary vector of nonnegative integer 
numbers, and jG  is a matrix of basis solutions. Then, 
since each contact place is incident with not more than 
two subnets [8], the system of equations for calculation of 
common invariants of contact places has the form 
 

 { CpGzGz j
p

ji
p

i ∈=⋅−⋅ ,0 , (3) 

 
where ji.  is the numbers of functional subnets, incidental 

to a place Cp∈ , and j
pG  is a column of matrix j

pG , that 
corresponds to place p . 

Therefore, variables jz  become not free ones. Note 
that system (3) has the same form as the source system 
(1). Thus, it may be solved with above-mentioned meth-
ods. Suppose that Ryz ⋅= , where R  is a matrix of basis 
solutions of system (3), and y  is an arbitrary vector of 
nonnegative integer numbers. So, the general solution of 
system (1) according to (2) may be represented as  

 
 Hyx ⋅= , GRH ⋅= . (4) 

 
With the aid of tool Tina [15] we obtain the following 

basis invariants of the subnets enumerated in fig. 2:  
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The composition of the model is defined by fusion 

of eight contact places indicated in fig. 2. Let us construct 
the system of equations for contact places:  
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The basis solutions of the system with respect to vector 
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Let us assemble the united matrix G  of matrixes 

1G , 2G , 3G , 4G . Notice that matrix G  may be con-
structed in different ways depending on the order of calcu-
lation of invariants for contact places. As each contact 
place is incident to two subnets, so its invariant may be 
calculated by two different ways.  
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After multiplication of matrixes we obtain:  
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Notice that the source system has five basis solutions so 
sixth solution is the sum of second and fourth, and sev-
enth – the sum of second and fifth.  

Therefore, the model of BGP protocol is p-invariant 
so, for instance, invariant,  

 
( )11111212121212=*x , 

 
which is the sum of second, third and fourth basis invari-
ants, contains all the natural components. Consequently, 
the model of protocol is safe and bounded. For all the 
states holds true 3* =⋅ µx .  

 
 

6. INVARIANTS OF TRANSITIONS 
To calculate invariants of transitions we construct the 

dual Petri net (Fig. 3), decompose it (Fig. 4) and imple-
ment the technique described for place invariants. The 
decomposition contains six minimal functional subnets. 
For calculation of invariants, it is convenient to consider 
the decomposition into two functional subnets. Since sub-
net 1Z ′  consists of 9 transitions, we may compose re-
mained minimal subnets into one subnet with 5 transi-
tions.  
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Figure. 3. Dual Petri net of BGP protocol model  
 

The following matrix represents the basis invariants of 
transitions: 
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Figure. 4. Decomposition of dual Petri net into minimal functional subnets
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As, for instance, the sum of two basis invariants 
 

( )112211112211* =y  
 

contains all the natural components, so the model of pro-
tocol BGP is t-invariant. Therefore, the model is consis-
tent. Sequence 64121093541110932871

* tttttttttttttttt=σ , cor-

responding to invariant *y , provides 00

*

µµ
σ
→ .  

Notice that, though the model of protocol BGP is in-
variant, it contains deadlocks ( )1182 ,, ppp  and 
( )1364 ,, ppp , reached via sequences 1611410932871 ttttttttttt  
and 3512410932871 ttttttttttt  correspondingly. It may be eas-
ily explained by the model does not represent timeouts 
provided by the source specifications. Supplied with tran-
sitions returning each system from the ESTABLISHED to 
the IDLE state the model becomes live. 

 
 

 
7. SPEED-UP OF COMPUTATIONS 

Let us estimate the speed-up of computations obtained 
in the assumption of the exponential complexity of the 
algorithms [11,12] for the solving of linear Diophantine 
systems in nonnegative integer numbers. Let the complex-
ity is about q2 , where q  is the number of nodes of net.  

Notice that even such rather tiny model allows the 
speed-up of computations. At calculation of place invari-
ants, instead to solve the system of dimension 12, we 
solved five systems with the dimension not exceeding 8. 
If we not take into accounting polynomial multipliers, 
then we obtain sixteen fold  ( 1622 812 = ) speed-up of 
computations.  

Notice that, speed-up have been obtained for the net 
numbering about dozen of nodes. At investigation of 
large-scale nets, the speed-up may be rather huge [9,10], 
so it is estimated [8] as exponential function rm−2 , where 

),(max cmr i
i

=  and im  is the number of places of subnet 

iZ , c  is the number of contact places.  
 
 

 



8. CONCLUSION 
Therefore, the decomposition of Petri net model of the 

communication protocol BGP into functional subnets was 
implemented. To verify the protocol, Petri net invariants 
were used. Invariance of the source model is proved on 
the base of established invariance of its functional sub-
nets. Essential speed-up of computations obtained con-
firms the practical value of proposed technique. 
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