
Ministry of Transport and Communications of Ukraine
Odessa National Academy of Telecommunication by the name of A.S. Popov

Department of Communication Networks

D.A. Zaitsev, T.R. Shmeleva

Simulating of Telecommunication Systems
with CPN Tools

Students’ book on the course

 «Mathematical Modeling of Information Systems»
for teaching of masters in communications

 APPROVED by

Council of faculty of
Information networks
Transaction № 5 of
16.11.2006 year

Odessa 2006

 2

UDK 621.39, 004.7
Issue plan 2005/2006

 Reviewers: Prof. V.A. Kudriashova,
 k.t.n, docent I.A. Tregubova

 Compilers: k.t.n., docent D.A. Zaitsev,

 aspirant T.R. Shmeleva

The description of the simulation system CPN Tools
features is presented. The system was developed in the
University of Aarhus (Denmark) and is used for modeling
of telecommunication systems and networks in the course
«Mathematical Modeling of Information Systems». For case
study an example of switched Ethernet model was chosen.

 Affiliated on

meeting of
Communication Networks
Department
Transaction № 4 of
10.11.2006 year

 3

Content

Introduction……………………………………………………………………… 5
1. Class of Petri Nets Implemented in CPN Tools……………………………… 5

1.1. Petri Net Graph and CPN ML……………………………………….. 5
1.2. An Example Consideration………………………………………….. 7

2. Destination and Basic Functions of CPN Tools……………………………… 10
2.1. Destination of CPN Tools…………………………………………… 10
2.2. Basic Functions of CPN Tools………………………………………. 10

3. Organization of CPN Tools interface………………………………………… 11
3.1. Areas of Main Window……………………………………………… 11
3.2. Working with Tools…………………………………………………. 12
3.3. Context-sensitive Menus…………………………………………….. 13
3.4. Model’s Structure……………………………………………………. 14
3.5. Organization of Help System………………………………………… 15
3.6. Reflecting Feedback of CPN Tools………………………………….. 16

4. Tool Box of CPN Tools………………………………………………………. 18
4.1. Net Tools…………………………………………………………….. 18
4.2. Create Tools………………………………………………………….. 19
4.3. Simulation Tools……………………………………………………... 21
4.4. Overview of Other Tools…………………………………………….. 23

5. Basics of CPN ML……………………………………………………………. 23
5.1. Simple Color Sets……………………………………………………. 24
5.2. Compound Color Sets……………………………………………….. 25
5.3. Declaration of Variables and Constants……………………………… 27
5.4. Functions……………………………………………………………... 27
5.5. Random Functions…………………………………………………… 29
5.6. Multi-sets…………………………………………………………….. 30
5.7. Timed Multi-sets……………………………………………………... 31

6. The Language of Models’ Description……………………………………….. 31
6.1. Place Inscriptions…………………………………………………….. 32
6.2. Arc Inscriptions………………………………………………………. 32
6.3. Transition Inscriptions……………………………………………….. 34

7. Peculiarities of Timed Nets in CPN Tools……………………………………. 36
8. Working with Nets’ Fragments……………………………………………….. 38
9. Fusion Places…………………………………………………………………. 40
10. Hierarchical Models’ Construction………………………………………….. 42

10.1. Basics of Transition Substitution…………………………………… 42
10.2. Bottom-up Development……………………………………………. 44
10.3. Top-down Development……………………………………………. 44

11. Analyzing a CP-net………………………………………………………….. 45
11.1. Debugging of Models………………………………………………. 45
11.2. State Space Analysis………………………………………………... 46
11.3. Simulation of Net Behavior………………………………………… 48
11.4. Measuring Fragments………………………………………………. 49

 4

12. Additional Features of CPN Tools…………………………………………... 51
12.1. Unions………………………………………………………………. 51
12.2. Lists…………………………………………………………………. 52

Appendices: An Evaluation of Network Response Time using a Colored Petri
Net Model of Switched LAN……………………………………… 54

A1. Switched LAN……………………………………………………….. 54
A2. Model of LAN……………………………………………………….. 54
A3. Model of Switch……………………………………………………… 56
A4. Models of Workstation and Server…………………………………... 57
A5. Model of Measuring Workstation……………………………………. 59
A6. Evaluation Technique………………………………………………... 60
A7. Parameters of Model…………………………………………………. 60

References……………………………………………………………………….. 62

 5

Introduction

CPN Tools is a special simulation system which uses the language of Petri nets
for models’ representation. The system was developed in University of Aarhus in
Denmark and is distributed free of charge for noncommercial organizations via web
site http://www.daimi.au.dk/CPNTools/. The level of service allows the classification
of CPN Tools as an enterprise system. It was used in a lot of real-life projects
especially in the area of telecommunications. Recently Nokia Corporation is applying
CPN Tools for model-driven development of new generation of its mobile phones.

1. Class of Petri Nets Implemented in CPN Tools

CPN Tools proposes very powerful class of Petri nets for models’ description.
According to the standard classification such nets are named hierarchical timed
colored Petri nets. It was proved that they are equivalent to Turing machine and
constitutes a universal algorithmic system. So an arbitrary object can be specified
using this class of nets.

Simplest concept of colored Petri net uses different types of tokens. The type of
a token is specified by natural number and represented visually as a color: 1-red, 2-
blue, 3-green, etc. The concept of a colored Petri net of CPN Tools is more
complicated. Such nets are often called generalized colored nets because the type of
token is described as an abstract data type like in programming languages. The term
“colored” remains historically but it is very difficult to represent such “colors”
visually now.

Timed Petri nets use the concept of model’s time to represent the durations of
actions in real-life objects. In spite of classical Petri net where the firing of a
transition occurs instantly the firing of a transition in timed net is concerned with
definite duration or timed delay. It allows the analysis of timed characteristics of real-
life objects, for instance, response time as a characteristic of network’s QoS.

Hierarchical nets provide construction of complicated models. In such nets an
element may be represented by another net. In CPN Tools a transition may be
substituted by an additional net. So we have a nested construction: net inside net. The
number of hierarchy levels has no principal limitations. Notice that, the idea is wide
common for programming languages where procedures are used to maintain the
complexity.

1.1. Petri Net Graph and CPN ML

In CPN Tools the language of models’ description constitutes a combination of
Petri net graph and programming language CPN ML (Markup Language).

The graph of Petri net is a bipartite directed graph. It consists of vertices of two
types: places drawn as circles or ovals and transitions drawn as bars:

 6

PLACE TRANSITION

Arcs are used to connect places and transition:

t1

ARC

ARC

ARC

p1

p2

p3

In Petri nets a concept of a token is also considered. Token is a dynamic object
that is located inside place and is moved as the result of transition firing:

x

x

x
t1

p1

t

2`token

2 2`token

p2

t

3`token

3 3`token

p3

t

x

x

x
t1

p1

t

2`token

1 1`token

p2

t

3`token

2 2`token

p3

t

1 1`token

In classical Petri nets all the tokens are elementary and the same. In colored
Petri net types of tokens are distinguished. Let us consider an example of pasty
consumed by students. We have two kinds of tokens: student, pasty. A hungry
student becomes replete student after eating a pasty:

x

y

x
eat

food

p

5`pasty

5 5`pasty

hungry
student

s

3`student

3 3`student

replete
student

s

x

y

x
eat

food

p

5`pasty

4 4`pasty

hungry
student

s

3`student

2 2`student

replete
student

s

1 1`student

Really, in CPN Tools special programming language is included for
description of attributes of net elements. This language provides declarations of color
sets, variables, constants, functions, and procedures. In the above example such
declarations were used:

colset s=unit with student;
colset p=unit with pasty;

 7

var x:s;
var y:p;

Two color sets were defined: s with the member student and p with the
member pasty. Places “hungry student” and “replete student” are of
type s with tokens student. Place food is of type p with tokens pasty. To fire
the transition you have to have both: a student and a pasty. The variables x and y are
used to extract tokens from places and to put new token into output place.

The example shows the way the different types of tokens may be processed. In
models of telecommunication systems color sets may be more complicated and
represent, for Ethernet instance, frames, records of switching table, etc.

In spite of classical Petri nets places, transitions and arcs have their attributes in
colored Petri net. In the above example place have the name – “hungry
student”, color set – t, initial marking – 3`student and current marking –
2`student after consuming a pasty by one of them. Variable x allows the choice
of an arbitrary student according to the color set of the variable; variable y allows the
choice of an arbitrary pasty. The same student that was extracted by variable x from
the place “hungry student” will be put in the place “replete student”
because the output arc of the transition eat is inscribed with the same variable x.

1.2. An Example Consideration

Let us consider more complicated example for preliminary study of CPN
Tools. It was taken from well-known fairytale about Cinderella. Stepmother has said
Cinderella to separate grains of different kinds. In this example mice are separating
grains while Cinderella is going to the ball.

z 12`mouse

x x

x

x u

u

y

if y=rice then 1`rice else empty

if y=wheat then 1`wheat else empty

if y=oat then 1`oat else empty

v

1`pumpkin

x

magic

sort

go
to

ball

go
home

mice

m

supernature

f

Fairy
1 1`Fairy

sack with
mixture

g

1000`rice++2000`wheat++3000`oat

6000
1000`rice++
2000`wheat++
3000`oat

home

c

Cinderella

1 1`Cinderella

ball

c

sack of rice

g

sack of wheat

g

sack of oat

g

tranport

p

 8

In this colored Petri net the following declarations of color sets and variables
are used:

colset p=unit with pumpkin;
colset c=unit with Cinderella;
colset g=with rice | wheat | oat;
colset m=unit with mouse;
colset f=unit with Fairy;
var x: c;
var y: g;
var z: f;
var u: p;
var v: m;

In this example we have four color sets: f with tokens named Fairy, c with
tokens named Cinderella, p with tokens named pumpkin and g with three
possible kinds of tokens named rice, wheat, oat. In the initial marking the only
permitted transition is magic; it is highlighted. Talking with Cinderella in the
transition magic, Fairy creates 12 mice and 1 pumpkin and disappears. The traveling
of Cinderella to the ball and sorting of grains are concurrent events and they may
occur simultaneously in any order. Pumpkin is used as a resource for transitions “go
to ball” and “go home” to carry Cinderella to the ball and backwards. Mice are
used as a resource for transition sort to select grains of different kinds.

Let us consider the directions and inscriptions of arcs. In transition magic
Cinderella is not changed as well as pumpkin in transitions “go to ball”
and “go home” so bidirection arcs are used. The other arcs are unidirection. The
arc directed from place to transition extracts a token of corresponding color set. The
token is extracted according to the inscription of transition’s input arc. In this
example all the inscriptions are represented by variables of corresponding color set.
For instance, input arc of the transition sort has the inscription y; y is a variable of
color set g; so an arbitrary grain is extracted from the place “sack with
mixture”. More complicated inscriptions of transitions’ input arcs will be studied
further.

As for the output arcs of transitions, they create new tokens. New token may
coincide with any token extracted from input place or may be created anew. For
instance, in the transition “go to ball” token Cinderella is extracted from
place home by variable x in the inscription of input arc and the same token
Cinderella will be put to place ball according to the inscription x on the output
arc. The transition magic is more complicated: Fairy disappears after firing of this
transition because she is extracted by input arc with inscription z and variable z is
not used in the inscriptions of output arcs; Cinderella in place home is not
changed by transition magic because bidirection arc with inscription x is used,
namely it only checks the presence of token in place home; 12 mice and 1

 9

pumpkin are created, the corresponding constants are written in the inscriptions of
output arcs. Now consider the model after 5000 steps of simulation:

z 12`mouse

x x

x

x u

u

y

if y=rice then 1`rice else empty

if y=wheat then 1`wheat else empty

if y=oat then 1`oat else empty

v

1`pumpkin

x

magic

sort

go
to

ball

go
home

mice

m

12 12`mousesupernature

f

Fairy

sack with
mixture

g

1000`rice++2000`wheat++3000`oat

3484
569`rice++
1178`wheat++
1737`oat

home

c

Cinderella

ball

c

1 1`Cinderella

sack of rice

g

431 431`rice

sack of wheet

g

822 822`wheat

sack of oat

g

1263 1263`oat

tranport

p

1 1`pumpkin

Cinderella arrived to the ball, mice are struggling with their job, Fairy

disappeared. The mice have selected 431 grains of rice, 822 grains of wheat and 1263
grains of oat. There are two permitted transitions in this marking: sort and “go
home”. Let us consider the way of grains’ sorting in this model. The transition sort
extracts one grain in the variable y but this grain is to be put only into one of places:
“sack of rice”, “sack of wheat”, “sack of oat”. The inscriptions of
output arcs contain functions that select only the grain of the required kind otherwise
the special token empty is chosen. Token empty means “nothing”.

Close consideration of the above example reveals a lot of things that does not
correspond the original fairytale. For instance, we do not consider time at all and the
warning of Fairy about midnight. We recommend you to try this model and find all
the lacks. After studying CPN Tools you may construct your own model completely
fit to the original fairytale.

Let us notice that the above toy example gives grains of experience for
developing models of telecommunication systems and networks. The job of mice
looks like a function of network router. Real-life example of switched Ethernet model
is put in Appendices. But to understand how it works a lot of knowledge collected in
the following sections is required.

 10

2. Destination and Basic Functions of CPN Tools

2.1. Destination of CPN Tools

CPN Tools is aimed to models’ design and analysis. It is a vital system in the
development of complicated objects in various fields of engineering. It is widely used
for production and business management, planning and control of military operations,
control of production systems and robots as well as vehicles and missiles. The
complete list of real-life applications you will find at home-page of CPN Tools
http://www.daimi.au.dk/CPNTools/. CPN Tools is implemented on both MS
Windows and Unix platforms now and constitutes in essence a new generation of
early used system Design-CPN.

As for telecommunications, CPN Tools is used for specification and
verification of protocols, estimation of networks throughput and QoS, design of
telecommunication devices and networks. Recently, Nokia Corporation is used CPN
Tools in model-driven development of new generations of its mobile phones. This
direction is the most fruitful for complicated devices’ engineering. Early a model was
used only for estimation of devices’ or networks’ characteristics in the process of
their development. In model-driven development an initial simple model is
sequentially transformed to the final specification of the system. The process of
development constitutes the process of giving more and more details of the real-life
system to the model until it becomes as minute as a technical specification required
for its production or installation. The advantage of this approach is the possibility for
analysis of a system on each stage of its design and estimation of its characteristics. Is
it still fit to the requirements? It allows the design of systems that are very close to
the optimal because for real-life complicated objects the formal solution of
optimization task is quite hard and in the most cases is practically unfeasible.

As for colored timed hierarchical Petri nets of CPN Tools they are a universal
algorithmic system so they allow the description of an arbitrary object. Moreover, the
language of colored Petri nets is convenient for systems’ specification especially for
systems with complicated interaction between components. The concept of
asynchronous events allows the way of description preserving the natural parallelism
of systems’ behavior. It is very convenient for further implementation on parallel
processors or data-flow architectures of computers.

The most advantage of CPN Tools application is gained when special
(hardware or software) processors of Petri nets are used. In this case the final
specifications of a system in the form of colored Petri net may be put directly to such
a processor. There are a few known types of hardware processors of Petri nets, for
instance signal processors in controllers of company Klashka.

2.2. Basic Functions of CPN Tools

Basic functions of CPN Tools consist in:
− creation (editing) of model;

 11

− analysis of models behavior via its simulation;
− creation and analysis of model’s state space.
For the creation of models the special graphic editor of colored Petri nets is

provided. The editor allows the drawing of Petri nets on the computer’s screen and
the inputting the attributes of nets’ elements and additional declarations written in
CPN ML language. Model may consist of a few pages. Pages are connected with
each other to provide a hierarchical structure.

For simple enough models the generation of its complete state space
(reachability graph) is possible. It is the best way, for instance, for verification of
telecommunication protocols. CPN Tools provides creation of state space and
automatic report on it where the conclusions about standard properties of Petri nets
such as boundedness and liveness are presented. Moreover, special language on the
base of CPN ML is provided for description of queries about nonstandard properties
of the state space the user is interested in. Unfortunately, for complicated models the
state space may be huge and its creation is unfeasible.

The only way for complicated models analysis is the simulation of its behavior.
CPN Tools provides step-by-step simulation for debugging of model as well as
automatic simulation of specified numbers of steps. Simulation on big time intervals
is the way for statistical analysis of model’s behavior. It is useful for estimation of
networks’ characteristics such as throughput and QoS.

3. Organization of CPN Tools interface

In CPN Tools a new concept of graphical interaction based on MS Open GL
features is implemented. It allows the fast inputting and editing of models using tools
from tool boxes and context-sensitive menus. The special facility of working with
two mouse devices is provided. In this case left mouse is used for interaction with
menu and for selection of tools from palettes while right mouse is used for drawing
and editing Petri nets.

3.1. Areas of Main Window

After the launch two windows of CPN Tools appear on the screen. The first of
them is black window; it is auxiliary and serves for output of messages when
subprocessed are started:

The second window is the main window of CPN Tools:

 12

It contains two areas: workspace – grey and index – white. Index consists of Tools
box, Help and Options; below them descriptions of nets are put; in the above example
there is no loaded net. In workspace the pages of nets are visualized. There is
graphical cursor in the main window for interaction with CPN Tools. Always in the
system small triangle means an item that may be opened by clicking on it. For
instance, we may open all the items in the index:

3.2. Working with Tools

The way to open a tool’s palette is to drag it with mouse from the index to the
workspace. Let us open Create tool:

The tool’s palette has appeared in the window.

 13

To take an instrument from tool’s palette we should click on it. Then cursor
takes a shape of corresponding instrument. For instance, we choose transition
tool from palette Create:

To abandon the tool we should drag it backwards on the palette and click on mouse
or push Esc bottom on the keyboard.

Each tool has its special options that may be shown and changed by clicking on
the corresponding rectangle in the index. For instance, in Net palette we may set
printing option to print net in black and white:

3.3. Context-sensitive Menus

For convenient interaction CPN Tools provides a lot of context-sensitive
menus appearing on the screen with pushing right button of mouse. Menus have the
shape of a circle with named sectors. To keep menu on screen you should hold the
button pushed moving mouse to choose required item. In the most cases items of
context-sensitive menus duplicates tools in palettes. For instance we may create new
net using instrument new net from Net palette:

 14

This may be done also with context-sensitive menu:

Context-sensitive menus make the interaction more natural and fast. You should only
press right button of mouse on an object and choose required action. In this way you
may close toolbox:

3.4. Model’s Structure

Models are named nets in CPN Tools. Their descriptions are situated in the
index under standard items. Let us consider new net after its creation:

Each net in CPN Tools has:

 15

• Name – name of the correspondent file with type .cpn;
• Step - the number of steps that have executed in a simulation;
• Time - the current model time;
• History - the list of commands that have been performed on the net;
• Declarations - the declarations of color sets, functions, constant values;
• Pages – names of net’s pages.

In the above window the name of net is model1.cpn, numbers of steps and time
are equal to zero, net consists of the only page named “Top page”. Let us notice
that “Top page” has appeared in workspace; we can draw net inside it using tools.
To open a page of a net we should drag it from index to workspace. For the creation
of new declarations and new pages context-sensitive menus are used:

3.5. Organization of Help System

CPN Tools has three kinds of help: speech bubbles, offline help and online
help. Speech bubbles appear on screen when you are keeping cursor on a
corresponding item for a few seconds. It describes the pointed object:

Clicking on the help item in the index starts browser with hypertext help of
CPN Tools:

It contains a lot of information on CPN Tools accomplished with nets’ examples
consideration. More peculiar details and up-to-date information is situated on CPN

 16

Tools home pages in Aarhus. In case of need, help system calls this information but it
can be reached only in the case your computer is connected to Internet.

3.6. Reflecting Feedback of CPN Tools

CPN Tools provides graphical feedback that reflects current state of system.
There are such kinds of graphical feedback as:

• Speech bubbles;
• Status bubbles;
• Auras;
• Changing cursor icon.
A speech bubble is a yellow rectangle that provides context-sensitive

information. Some speech bubbles appear automatically, while others appear after a
slight delay when the cursor is moved over an appropriate object. For example,
moving the cursor over a declaration with a syntax error will cause a speech bubble
containing an error message to appear.

Speech bubbles are used to show:
• Error messages during syntax checking.
• Error messages when simulating nets.
• Tool tips for tools in palettes and toolglasses.
• Detailed information for status bubbles.
• The result of applying the Evaluate ML tool.
• The full path to a saved net. To see the full path, move the cursor over the name of

the net in the index.
Status bubbles are color-coded bubbles that occasionally appear at the bottom

of the index. Move the cursor over a status bubble to see the corresponding speech
bubble:

Status bubbles have one of the following colors:
• Green indicates that an operation was completed successfully.
• Red indicates that an error occurred when executing an operation.
• Light purple indicates that a time-consuming operation, such as a long simulation,

is currently being executed.

 17

Color-coded auras are used to highlight objects with particular characteristics
or to indicate different kinds of relationships between objects. Auras are associated
with places, transitions, arcs, inscriptions, declarations, page tabs, and index entries,
such as page names and net names:

Auras have the following colors:
• (Bright) Red indicates objects with errors during syntax checking and when

simulating nets.
• Dark redish auras indicate non-unique names of places and transitions when

syntax checking.
• Green indicates enabled transitions when simulating nets.
• Dark blue indicates dependency between declarations and other elements, such as

places, transitions, and pages.
• Aqua indicates which object an inscription belongs to.
• Orange indicates that syntax checking of an object has not yet begun.
• Yellow indicates that syntax checking of an object is currently being performed.
• Pink indicates which fusion places belong to a fusion set.
• Aqua indicates port/socket assignments and super-/subpage relationships when

working with hierarchical nets.
The cursor icon changes to indicate which actions can be, or are being,

performed. For example:

• The standard cursor is an arrow or just an arrowhead
• The hand cursor indicates that an item can be moved.
• The crossbar cursor indicates that it is possible to edit text.
• The double-headed arrow cursor indicates that an item can be resized. The

directions of the arrow heads indicate which direction the item can be resized
horizontally , vertically, or both simultaneously.

• After picking up a tool from one of the palettes, the cursor will change to indicate
which tool has been picked up.

• For multi-phase tools, i.e. tools that are applied by clicking on more than one
object, the cursor will indicate which phase of the tool will be applied next.
Examples of multi-phase tools are the assign port-socket tool and the set subpage
tool.

 18

4. Tool Box of CPN Tools

Tool box provides the following palettes of tools:

• Net tools: for operations with whole nets
• Create tool: for drawing and editing Petri nets
• Simulate tools: for simulation of net’s behavior
• State Space tools: for creation and analysis of state space
• Hierarchy tools: for creation of multilevel nets
• Style tools: for peculiarities of nets’ appearance
• View tools: for scale choice and highlighting groups
• Auxiliary tools: for improvement of nets’ readability

4.1. Net Tools

The items of the palette have the following meaning (from left to right and from up to
down):
• creates a new net;
• creates a new page;
• closes a net;
• loads in a net;
• saves a net;
• saves a net with a new name;
• prints a net.

 19

To create a new net you should start with “creates a new net” item and finish
with “saves a net” item. To open an existed net you should start with “loads in a net”.
Nets are printed to file in .eps (Extended Post Script) format and may be inserted, for
instance, as pictures into MS Word documents. New pages are created mainly for
hierarchical nets.

4.2. Create Tools

The items of the palette have the following meaning:
• creates a transition;
• creates a place;
• creates an arc;
• creates a vertical magnetical guideline;
• deletes an element;
• clones an element;
• cycles between the possible directions of arc;
• creates a vertical magnetical guideline.

Let us start with this palette to draw our first net:

 20

The simple Petri net was drawn but it is still not correct because its elements
have no attributes. We shall use type INT from standard declaration to make this
example work and add a variable x in declarations:

The net is correct now. Notice that place a contains 6 tokens: 1 of kind 3, 3 of kind 4
and 2 of kind 5. Let us show more meticulously the way to input attributes of nets’
elements. Each node has its own set of attributes. After pointing an element you may
switch among its attributes using Tab key of keyboard:

NAME

PLACE TYPE

INITIAL MARKING

NAME

ACTION

GUARD TIME DELAY

In the above example attributes of transition are not used. The current marking of the
place is written in green color by CPN Tools automatically.

Magnetical guidelines are very useful to arrange elements of net in order.
Elements are moved automatically to the nearest guideline. For instance:

 21

4.3. Simulation Tools

The items of the palette have the following meaning:
• goes to the initial state;
• stops ongoing simulation;
• executes a transition with a chosen binding;
• executes a transition;
• executes the specified number of transitions showing intermediate markings;
• executes the specified number of transitions without showing intermediate

markings;
• evaluates a text as ML code.

Items that “execute a transition” are aimed to the debugging of nets with step-
by-step simulation. We may click on a firable transition to choose it or on empty spot
of a binder to allow the choice of transition to CPN Tools. Let us consider the
simulation process:

The token 4 has been chosen by variable x in a random way from place a and moved
by transition b to place c. Executing transition “with a chosen binding” serves for
minute debugging. In this case you can choose manually a token that satisfies to the
inscription of transition’s input arc:

 22

In this example the choice was proposed between tokens 3, 4, 5 and the token 5 has
been chosen manually.

As for the “execution of specified number of transitions”, they are chosen
randomly by CPN Tools. You may enter the required number of transitions:

The number of three transitions was inputted in the above example. The only
difference between two modes is that CPN Tools stops and shows intermediate
marking in the first case and shows only the final marking in the second case. The
result is the same but the mode without showing intermediate markings is much
faster. It is used for simulation on large intervals of time for accumulation of
statistical information.

Item “stops outgoing simulation” allows the interruption of simulation process
when something is going wrong or it lasts too long time. Item “goes to the initial
state” allows the return to the initial state:

Evaluation of a text as ML code is required to force syntax checking in
language constructions.

 23

4.4. Overview of Other Tools

Other tools are either accessory as Auxiliary, Style, View or more
complicated as Hierarchy, State Space. Meticulous description of hierarchy
and state space tools will be given in the following sections.

Auxiliary tools allow the creation of boxes, circles and text labels that do
not have any semantic meaning, but can ease the readability of the net.

Style tools are used for underlining important net structures with colors, line
thickness, size of arc’s head (arrow), filling of elements to improve readability. None
of these tools have any semantic effect on the net.

View tools are used to change the view of a page and its elements through
grouping and zooming.

Hierarchy tools are used to edit the hierarchical structure of the net. The
palette contains tools for both bottom-up and top-down structuring of the net.

State space tools are used to calculate state spaces of a net, to transfer
states between the simulator and the state space tool, and to generate state space
reports.

5. Basics of CPN ML

CPN Tools uses the CPN ML language for declarations and net inscriptions.
CPN ML provides declarations of color sets (data types), variables, functions, values
(constants). Each place of colored Petri net should have a definite color set as its
attribute; it may contain tokens only of the specified color set. Variables and
functions are used as the inscriptions of transitions and arcs.

Declarations are situated in the index as a part of net. There are standard
predetermined declarations of such color sets as: E - elementary, INT - integer, BOOL
- Boolean, STRING - string. User’s declarations may be added after standard
declaration using context-sensitive menu. Moreover, for complicated nets CPN Tools
provides external declarations that may be loaded from a file.

CPN Tools automatically syntax checks your nets as you create them or when
you load in a net. You can see by colors indications how far the check has gotten. The
colors indications are shown in the index, underlining the name of the page where the
color belongs. If the page is open in a binder, the color is also shown in the page tab
at the top of the page, and on the CP-net element where the color belongs. The orange
aura indicates that an element is not currently checked. When you load a net, the
syntax check takes a couple of minutes to complete. During this phase, the elements
will change aura from orange to yellow to no aura (or red, if there is an error). If the
orange aura stays, it is probably because either there is something missing or there is
an error on a related net element.

Declarations are checked starting from the top. If a declaration depends on a
later declaration, it will get an error saying the other declaration is not defined.
Declarations with errors are rechecked when a change is made in any declaration. If

 24

there is an error in the declarations, the declaration with the error will be underlined
with red. The net entry and all affected pages will also be underlined with red.

A red aura means the element has been checked but had an error. A speech
bubble should appear with the exact error message. Elements connected to the
element with the error are not checked until the error is fixed.

5.1. Simple Color Sets

CPN ML provides such simple color sets as: Unit, Boolean, Integer, String,
Enumerated, Index.

The unit color set comprises a single element. The declaration has syntax:

colset name = unit [with new_unit];

Without option the name of token coincides with the name of color set. In the
Cinderella example we used such units as:

colset p=unit with pumpkin;
colset c=unit with Cinderella;
colset m=unit with mouse;
colset f=unit with Fairy;

The boolean values are true and false. The declaration has syntax:

colset name = bool [with (new_false, new_true)];

The option allows the new names for true and false, for instance, yes and no:

colset Answer = bool with (no, yes);

Following operations may be applied to boolean variables:

not b negation of the boolean value b
b1 andalso b2 boolean conjunction, and
b1 orelse b2 boolean disjunction, inclusive or

Integers are numerals without a decimal point. The declaration has syntax:

colset name = int [with int-exp1...int-exp2];

The option allows the restriction of the integer color set to an interval determined by
the two expressions in int-exp1 and int-exp2:

colset Dozen = int with 1..12;

Following operations may be applied to integer variables: +, -, div, mod,
abs, Int.min, Int.max.

 25

Strings are specified by sequences of printable ASCII characters surrounded
with double quotes. The declaration has syntax:

colset name = string [with string-exp1..string-exp2
[and int-exp1..int-exp2]];

The option specifies the ranges of valid characters:

colset LowerString = with "a".."z";

The following operations may be applied to string variables: ^ - concatenation,
String.size, substring.

Enumerated values are explicitly named as identifiers in the declaration. The

declaration has syntax:

colset name = with id0 | id1 | ... | idn;

In the example with Cinderella the following enumerated color set was used:

colset g=with rice | wheat | oat;

Indexed values are sequences of values comprised of an identifier and an

index-specifier. The declaration has syntax:

colset name = index id with int-exp1..int-exp2;

Indexed values have the form: id i or id(i) where i is an integer and int-
exp1 <= i <= int-exp2. For example in the task about dining philosophers
we may declare philosophers and forks as:

colset PH = index ph with 1..5;
colset FR = index fork with 1..5;

And philosopher ph(2) takes forks fork(1) and fork(2).

5.2. Compound Color Sets

Compound color sets constitute a combination of simple color sets. CPN ML
provides such compound color sets as: products, records, unions,
lists, subsets and aliases. As lists and unions are rarely used and
more complicated they will be considered in the last section.

Products and records represent corteges of data formed by Cartesian products
of components’ color sets. The only difference between them consists in: components
of product color set are unnamed while components of record color set have their
names. There is close resemblance with record data type in Pascal programming
language or structures in C language.

Declaration of product color set has syntax:

 26

colset name = product name1 * name2 * ... * namen;

Values of this color set have form:

(v1, v2, ..., vn) where vi has type namei for 1<=i<=n.

To extract ith element of a product the following operation is used:

#i name

Declaration of record color set has syntax:

colset name = record id1:name1 * id2:name2 * ... *
idn:namen;

Values of this color set have form:

{id1=v1, id2=v2, ..., idn=vn} where vi are values of type
namei for 1<=i<=n.

To extract ith element of a product the following operation is used:

#idi name

Let us consider the above color sets on the example of Ethernet frame
description. Ethernet frame consists of: source address, destination address and data.
We represent MAC addresses with integer color set and frame’s data with string color
set.

colset MAC = int;
colset DATA = string;
colset frame = product MAC * MAC * DATA;
colset frame1 = record src : MAC * dst : MAC, d : DATA;

Ethernet frames may be represented either with frame or frame1 color sets.
For frame color set the value x = (2, 4, “Hello”), for instance, describes
the frame sent by device 2 to device 4 containing staring “Hello”. The same value
for frame1 color set has the form x1 = {src=2, dst=4, d=”Hello”}.

To extract destination address in frame color set we write:

#2 x

and in frame1 color set:

#dst x1

An alias color set has exactly the same values and properties as a previously

declared color set. It’s introduced to use different name of color set. The declaration
has syntax:

colset name = name0;

 27

5.3. Declaration of Variables and Constants

A variable is an identifier whose value can be changed during the execution of
the model. Variables are used in Petri net elements’ inscriptions.

Declaration of variable has syntax:

var id1, id2, ..., idn : cs_name;

where idi is an identifier, cs_name is the name of a previously defined color
set. For instance:

var f1, f2 : frame;
var f3, f4 : frame1;

A value declaration binds a value to an identifier (which then works as a

constant). Declaration of value has syntax:

val id = exp;

where id is an identifier and exp is a CPN ML expression. The expression
represents the value to be associated with the identifier. For instance:

val CheckFrame = (3, 5, “Ping”);
val ResponseFrame1 = {src=5, dst=3, d=”OK”};

5.4. Functions

Functions of CPN ML implement standard control structures of a programming
language such as “if” and “case” operators. But as ML constitutes in essence a
language of functional programming the most power of it is revealed with recursive
functions.

Declaration of function has syntax:

fun id pat1 = exp1
 | id pat2 = exp2
 | ...
 | id patn = expn;

where pat1, pat2, …, patn are patterns and exp1, exp2, ..., expn
all have the same type. The declaration means that in the case actual arguments
satisfy pattern pati then the value of the function is calculated as expi. For
instance, the following function calculates factorial of an integer number using
recursion:

fun fact (0) = 1
 | fact (i) = i * fact(i-1);

 28

if-then-else and case control structures are available for functions’ description:

if bool-exp then exp1 else exp2;

where exp1 and exp2 have the same type.

case exp of
 pat1 => exp1
 | pat2 => exp2
 | ...
 | patn => expn;

where exp1, exp2, ..., expn all have the same type. Their meaning is usual
like in other programming languages. For instance, function that calculates the sign
of a number may be written:

fun sign (x) = if x>0 then 1 else if x<0 then ~1 else 0;

The function that returns the name of a number may be written as:

fun nname (x) =
 case sign(x) of
 1 => "positive"
 | ~1 => "negative"
 | _ => "zero";

The underscore _ in the last line indicates that the string “zero” will be chosen for
all the other values of checked expression (sign(x)).

The let construction permits the declaration of locally-scoped variables within

a function definition:

let
 val pat1 = exp1
 val pat2 = exp2
 ………
 val patn = expn
in
 exp
end;

For instance, in calculation of the size in meters on millimeters:

fun metr (x) =
 let
 val mminm=1000;
 in
 x div mminm
 end;

 29

5.5. Random Functions

Random functions provide facilities for modeling of statistical characteristics.
For instance, they allow the description of traffic’s intensity or faults’ frequency in
telecommunication systems. There are a few ways for random choice description in
CPN Tools:

- free variables;
- function ran;
- special random distribution function;

Free variables are output arc variables that have not been bound on an input
arc or in the guard. They are assigned random values when executing a CP-net. The
type of free variables must be small color sets. Color sets can be classified as large or
small. This distinction determines which predefined functions are meaningful for a
particular color set. A color set is large if it contains too many (default 100) elements
to enumerate, otherwise it is small. Unit color sets, Boolean color sets, index color
sets, and enumerated color sets are small.

In the following example the variable i is a free variable with the range 1..31.
In the second picture the state after four steps is shown; four values of i were taken
by CPN Tools in a random way:

i
d

colset mday = int with 1..31;
var i : mday;

b

INT

i
d

colset mday = int with 1..31;
var i : mday;

b

INT

4

1`10++
1`13++
1`14++
1`20

Function ran generates a random value for large color sets. In the following

example function ranRange() generates a random value in the range 1..10000:

1`ranRange()
d

colset Range = int with 1..10000;

fun ranRange () = Range.ran();

b

INT

1`ranRange()
d

colset Range = int with 1..10000;

fun ranRange () = Range.ran();

b

INT

4

1`158++
1`569++
1`728++
1`8978

CPN Tools provides also a series of special random distribution function for

such well-known distributions as Bernoulli, binomial, Erlang, exponential, normal,
Poisson, student, uniform (discrete and continuous). For instance, function

erlang(n:int, r:real) : real

where n>=1 and r>0.0, returns a drawing from an n-Erlang distribution with
intensity r.

 30

5.6. Multi-sets

Multi-sets are widely used in CPN Tools for place’s marking representation
and other purposes. Let us remind the concept of multi-set. In spite of usual set it
contains each element with a definite multiplicity in other words in definite number
of copies. Multi-sets are also named bags.

The back-quote (`) operator is the multi-set constructor. For example, 3`5 is
the multi-set with three appearances of the color 5. The description of a multi-set has
the syntax:

i`c

The integer i must be non-negative. If this is not the case then the empty multi-set
will be returned. The multi-set operator combined with multi-set addition (++) and
subtraction (--) provide a succinct method for specifying multi-sets. For example, in
the described in Section 1 Cinderella model the place “sack of mixture” has
initial marking:

1000`rice ++ 2000`wheat ++ 3000`oat

It means that the sack contains 1000 grains of rice, 2000 grains of wheat and 3000
grains of oat. Please pay your attention to the sign of multi-set constructor: it is
backquote (`) but not apostrophe (‘). For the example of Ethernet frames with color
set frame1 the content of a buffer may be presented as:

1`{src=2, dst=5, d=”request”} ++ 1`{src=5, dst=2, d=”answer”}

It means two frames: the first with data “request” directed to device 5 from
device 2 and the second with data “answer” directed to device 2 from device 5.

The following Constants, Operations, and Functions are available for multi-
sets:

empty the empty constant constructs an empty multi-set that is identical for all kinds of multi-
sets

ms1 == ms2 multi-set equality
ms1 <><> ms2 multi-set inequality
ms1 >> ms2 multi-set greater than
ms1 >>== ms2 multi-set greater than or equal to
ms1 << ms2 multi-set less than
ms1 <<== ms2 multi-set less than or equal to
ms1 ++ ms2 multi-set addition

ms1 -- ms2 multi-set subtraction (ms2 must be less than or equal to ms1), raises Subtract
exception if ms2 is not less than or equal to ms1.

i ** ms scalar multiplication
size ms size of multi-set ms
random ms returns a pseudo-random colour from ms
cf(c,ms) returns the number of appearances of colour c in ms

filter p ms takes a predicate p and a multi-set ms and produces the multi-set
of all the appearances in ms satisfying the predicate

 31

For instance, let

m1 = 2`5 ++ 3`4 ++ 4`5;
m2 = 1`5 ++ 2`4 ++ 3`5;

then

m1 ++ m2 = 3`5 ++ 5`4 ++ 7`5
m1 – m2 = 1`5 ++ 1`4 ++ 1`3
m1 >> m2 is true
size m1 = 9
cf(4,m1) = 3

In CPN tools initial and current marking of a place is represented with multi-
set of color set of the place. And at the choice of a token by a variable in the
inscription of place’s output arc CPN Tools provides a random choice like with
function random.

5.7. Timed Multi-sets

Timed multi-sets are used in CPN Tools to represent timed delays in the model.
The declaration of corresponding color set should be accomplished with modifier
timed. The @, @+, and @@+ operators are used to add time stamps to colors.
Adding a time delay of x to a color c will attach a time stamp with a value that is
equal to the current model time + x to the color c. The following operations are valid
for timed multi-sets:

c @ t attach the time stamp t (with type Time.time) to the colour c

ms @+ i add the integer time delay i to each of the colours in multi-set ms,
returns a timed multi-set

tms1 +++ tms2 timed multi-set addition

For instance the declaration

colset tint = int timed;
var t : tint;
t = 1`2@100 ++ 1`3@200 ++ 1`4@300;

means that token 2@100 might be taken by CPN Tools only after model time
instance equaling to 100, the token 3@200 – only after model time instance equaling
to 200 etc. Before the time of activation a token can not be taken by any transition of
a model.

6. The Language of Models’ Description

In CPN Tools each element of Petri net has its attributes described in CPN ML
language. Using Create palette we put an element onto a page of the model. Then

 32

element’s attributes should be added. For this purpose you should click by mouse on
the corresponding element and use Tab key for switching among attributes. Pressing
Esc key lets you leave the chosen element; the same result may be obtained by
clicking mouse at the other spot of the model. Let us consider attributes of each
element separately.

6.1. Place Inscriptions

There are three inscriptions that may be associated with a place. Two are
optional and one is required:

• Color set inscription - required
• Initial marking inscription - optional
• Place name inscription- optional

NAME

COLOR SET

INITIAL MARKING

On the initial marking CPN Tools automatically creates current marking which
is written in green color and shows the total number of tokens and marking’s details.
For instance, in Cinderella example:

sack with
mixture

g

1000`rice++2000`wheat++3000`oat

6000
1000`rice++
2000`wheat++
3000`oat

6.2. Arc Inscriptions

The inscription has the form:

The color set of the arc expression expr must match the color set of the place
attached to the arc. If the color set of an arc expression does not match the color set of
the place attached to the arc, an error message will appear near the arc during syntax
checking. There is essential difference between inscriptions of input and output arcs
of a transition.

The transition’s input arc expression constitutes a pattern for choice of token.
This pattern is described by a predicate which may be applied in function filter

 33

for corresponding color set. In the simplest case this predicate consists of a single
variable of the corresponding color set as in the above examples. In the net

x x
b

var x: INT;

a

INT

2`5++3`4++1`3

6
1`3++
3`4++
2`5

c

INT

any of 6 tokens may be chosen by variable x. More complicated case constitutes the
choice of frames with source address equaling to 2 for Ethernet frames:

(2,dst,d)
get

colset MAC=INT;
colset DATA=string;
colset frame=product MAC * MAC * DATA;
var src, dst : MAC;
var d : DATA;

buffer

frame

1`(2,5,"a")++1`(3,4,"b")++1`(2,4,"c")

3
1`(2,4,"c")++
1`(2,5,"a")++
1`(3,4,"b")

Any of frames (2,5,”a”) and (2,4,”c”) may be taken by inscription
(2,dst,d).

The transition’s output arc expression constitutes a constructor for new tokens
creation. This constructor often uses variables of input arcs inscriptions and in the
simple cases may coincide with one of them. In the following example transition sum
calculates the sum of input tokens:

1`(x+y)

x

y
sum c

INT

a

INT

5`10++4`20

9
5`10++
4`20

b

INT

7`3++5`4

12
7`3++
5`4

1`(x+y)

x

y
sum c

INT

3
1`13++
1`14++
1`24

a

INT

5`10++4`20

6
3`10++
3`20

b

INT

7`3++5`4

9
6`3++
3`4

Moreover, time delays may be applied to output tokens. In the following example we
provide generation of a frame every 100 units of model time:

x

x@+100 x
gen

colset tframe=frame timed;
var x: tframe;

clock

tframe

(2,4,"ping")

1 1`(2,4,"ping")@0

buf

tframe

x

x@+100 x
gen

colset tframe=frame timed;
var x: tframe;

clock

tframe

(2,4,"ping")

1 1`(2,4,"ping")@300

buf

tframe

3
1`(2,4,"ping")@200+++
1`(2,4,"ping")@100+++
1`(2,4,"ping")@0

 34

6.3. Transition Inscriptions

There are four inscriptions that may be associated with a transition. All are
optional:

• Transition name inscription
• Guard inscription
• Time inscription
• Code segment inscription

NAME

CODE SEGMENT

[GUARD] @+(TIME DELAY)

A transition delay must be a positive integer expression. The expression is
preceded by @+, and this means that the time inscription has the form @+ delay-
expr. Before a time inscription has been added, the default text for the inscription is
@+. Time delay is always added relative to the current time. For example, if current
time is 10 and the time delay is @+2, then the time stamp of tokens sent to the output
places will be 12. A missing time inscription is equivalent to a zero delay. In spite of
arcs’ delay transition’s delay is applied to all the output tokens of transition. In the
case of one output arc it’s the same. For instance, compare the following net with the
example in section 6.2:

x x
gen

@+100

clock

tframe

(2,4,"ping")

1 1`(2,4,"ping")@0

buf

tframe

x x
gen

@+100

clock

tframe

(2,4,"ping")

1 1`(2,4,"ping")@300

buf

tframe

3
1`(2,4,"ping")@300+++
1`(2,4,"ping")@200+++
1`(2,4,"ping")@100

A guard is a CPN ML Boolean expression that evaluates to true or false.

Before a guard has been added, the default text for the inscription is []. Guard may
be a single Boolean expression or a list of Boolean expressions [b-exp1, b-
exp2, ..., b-expn]. The transition fires only in the case its guard is true and
guard restricts the choice of input tokens. For instance, the checking of input frames
presented in section 6.2 may be written as:

(src,dst,d)
get

[src=2]

colset MAC=INT;
colset DATA=string;
colset frame=product MAC * MAC * DATA;
var src, dst : MAC;
var d : DATA;

buffer

frame

1`(2,5,"a")++1`(3,4,"b")++1`(2,4,"c")

3
1`(2,4,"c")++
1`(2,5,"a")++
1`(3,4,"b")

Moreover, guard allows the comparison of parameters of tokens from different places
using their combination in expressions. The following fragment models the process
of frames’ extraction from Ethernet segment:

 35

f

addr

f
get

[#1 f = addr]

var addr : MAC;

var f : frame;

segment

frame

1`(2,5,"a")++1`(3,4,"b")++1`(2,4,"c")

3
1`(2,4,"c")++
1`(2,5,"a")++
1`(3,4,"b")

own

MAC

1`2

1 1`2

buffer

frame

The own address of workstation is stored in the place own. It’s checked only so
bidirection arc is used.

Each transition may have an attached code segment which contains ML code.
Code segments are executed when their parent transition occurs. Code segments may
use CPN variables and may bind CPN variables located on output arcs that are not
bound elsewhere. Each code segment may contain:
• Input pattern (optional)
• Output pattern (optional)
• Code action (mandatory)

An input pattern is a tuple of CPN variables, preceded by the keyword input.
The input pattern lists the CPN variables that can be used in the code action. The
code action can use the values of these CPN variables but it cannot change them. The
CPN variables listed in the input pattern can be used in the code action even if you
have declared an ML identifier with the same name in the declaration node. If the
input clause is omitted, it implies that no CPN variables can be used in the code
action.

An output pattern is a tuple of CPN variables, preceded by the keyword
output. The output pattern lists the CPN variables to be changed as a result of the
execution of the code action. An output pattern must be a CPN variable or a tuple of
CPN variables without repetitions. If the output clause is omitted, it implies that no
CPN variables are calculated.

A code action is an ML expression, preceded by the keyword action. The
code action cannot contain any declaration of color sets, CPN variables, or reference
variables. It can, however, apply user-declared and predeclared constants, operations,
and functions. In addition, new functions and constants can be defined for local use
by means of let-in-end. The code action is executed as a local declaration in an
environment containing the CPN variables specified in the input pattern. This
guarantees that the code action cannot directly change any CPN variables but only
local copies of them. When the code action has been executed, its result is applied to
bind the CPN variables in the output pattern. The code action, when evaluated in an
environment containing the input pattern variables must yield a result of the same
type as the output pattern. If no output pattern is given, its type is assumed to be unit.

Code segments are used for more complicated processing of input tokens. The
example for sum of tokens described in section 6.2 may be represented using code
segment as:

 36

z

x

y
sum

input (x,y);
output (z);
action
(x+y);

c

INT

a

INT

5`10++4`20

9
5`10++
4`20

b

INT

7`3++5`4

12
7`3++
5`4

7. Peculiarities of Timed Nets in CPN Tools

CPN Tools provides both: Petri net without times and timed Petri nets. If none
of color sets of a model has modifier timed then net is considered as untimed. In
this case CPN Tools uses only internal Step variable that means the number of
executed transitions. The algorithm of CPN Tools simulation may be represented in
the following way:

Notice that, the transition’s choice may be implemented either manually at step-by-
step simulation or automatically in a random way by CPN Tools at execution of
specified number of steps.

For timed Petri nets the algorithm is more complicated because the way of time
advancing:

The next instant of the model time will not be the instant Time+1. The system
advances time to the nearest event in the future Time:=time-of-nearest-future-event
and then executes all the events that may occur in this instant of time advancing the
variable Step in the described above way. So we should be careful combining timed
and untimed nets because permitted transitions fires till the set of permitted
transitions becomes empty. It may cause the so named infinite looping in models’
behavior. For instance, in the following net time does not move and the number of
generated frames is constantly increasing:

Create the set
of permitted
transitions

Chose a
transition to
fire

Execute (fire)
the chosen
transition

Advance step number:
Step:= Step+1

Create the list
of future
events

Find the
closest future
event with
time NTime

Advance
model time:
Time:=NTime

Stay executing
sequentially all
the permitted
transitions

 37

x x
gen

@+100

clock

frame

(2,4,"ping")

1 1`(2,4,"ping") buf

tframe

42 42`(2,4,"ping")@100

It should be noticed that CPN Tools implements very simple and powerful
class of Timed Petri nets due to time stamps usage. Each token is supplied with its
time stamp t (k@t). For moments of model Time Time<t the token is not processed
by simulation system; it is being in so named void state and does not take part in
firing any transitions. After moment of time t token k wakes up and participates in
firing of transition. This way of times representation allows the instantaneous firing
of transitions. Output tokens supplied with time delays (k@t+d) wait their time of
activation inside corresponding output places. The following example of tracing
shows the way of time processing in CPN Tools:

x x
b

@+50

Step: 0
Time: 0

a

tint

1`5@+100++1`4@+100++1`3@+100++
1`4@+200++1`3@+200++
1`5@+300++1`4@+300

7

1`3@200+++
1`3@100+++
1`4@300+++
1`4@200+++
1`4@100+++
1`5@300+++
1`5@100 c

tint

x x
b

@+50

Step: 1
Time: 100

a

tint

1`5@+100++1`4@+100++1`3@+100++
1`4@+200++1`3@+200++
1`5@+300++1`4@+300

6

1`3@200+++
1`4@300+++
1`4@200+++
1`4@100+++
1`5@300+++
1`5@100 c

tint

1 1`3@150

x x
b

@+50

Step: 2
Time: 100

a

tint

1`5@+100++1`4@+100++1`3@+100++
1`4@+200++1`3@+200++
1`5@+300++1`4@+300

5

1`3@200+++
1`4@300+++
1`4@200+++
1`4@100+++
1`5@300

c

tint

2
1`3@150+++
1`5@150

x x

b

@+50

Step: 3
Time: 200

a

tint

1`5@+100++1`4@+100++1`3@+100++
1`4@+200++1`3@+200++
1`5@+300++1`4@+300

4

1`3@200+++
1`4@300+++
1`4@200+++
1`5@300

c

tint

3
1`3@150+++
1`4@150+++
1`5@150

x x
b

@+50

Step: 5
Time: 300

a

tint

1`5@+100++1`4@+100++1`3@+100++
1`4@+200++1`3@+200++
1`5@+300++1`4@+300

2
1`4@300+++
1`5@300

c

tint

5

1`3@250+++
1`3@150+++
1`4@250+++
1`4@150+++
1`5@150

x x
b

@+50

Step: 7
Time: 300

a

tint

1`5@+100++1`4@+100++1`3@+100++
1`4@+200++1`3@+200++
1`5@+300++1`4@+300

c

tint

7

1`3@250+++
1`3@150+++
1`4@350+++
1`4@250+++
1`4@150+++
1`5@350+++
1`5@150

In the instance of time 0 no transition is permitted so no token has time stamp 0. The
next instance of time equals to 100. CPN Tools executes 3 steps at this moment of
time moving 3 tokens to place c; all these tokens have initial time stamps equaling to
100. In the instance of time 200 it moves 2 tokens with time stamps equaling to 200
and finally in the instance of time 300 it moves 2 remained tokens.

For description time delays either delays of transition or delays of arcs may be
used. Delays of transitions in most cases are more comprehensible because transitions
model actions of an object. But the usage of arcs’ delays gives us more flexibility at
the models construction.

For modeling traffic it is convenient the usage of random functions as time
delays. The wide choice of random distribution functions described in section 5.6
allows the description of traffic peculiarities. In the following example the Poisson
flow of frames is generated:

x

x@+poisson(100.0) x
genclock

tframe

(2,4,"ping")

1 1`(2,4,"ping")@642

buf

tframe

6

1`(2,4,"ping")@536+++
1`(2,4,"ping")@430+++
1`(2,4,"ping")@329+++
1`(2,4,"ping")@217+++
1`(2,4,"ping")@105+++
1`(2,4,"ping")@0

 38

8. Working with Nets’ Fragments

Working with fragments is considered as a standard opportunity of a graphical
editor. Most graphical editors (for instance, Corel Draw) provide operations with
highlighted rectangular fragments of a picture. The concept of nets’ fragments is
quite generalized in CPN Tools and formulated in the terms of group of elements. A
group may have any shape and it is given by switching (toggling) elements belonging
to it. Then the fragment may be duplicated and moved to any location using Clone
tool of the palette Create.

To create a group, use the New group tool. The corresponding menu appears
at clicking on group tab at the left-bottom of the binder:

Select the "New group" entry. Now a new group tab appears, and the new group is set
as the active group. All objects on the page are dimmed to show that there are no
members in the new group:

To change the active group, just click on the group tab of the group you wish to
activate. The group tab to the far left (the first group tab, called NONE) works
differently - clicking this tab means deactivating all groups. When this tab is clicked,
all objects on the page appear normal and work normally. To add an object to the
active group, use the Toggle group tool. For example, bring up the marking
menu on the object and select the "Toggle group" entry:

 39

If the object is not in the active group, it is added to the group (and highlighted).
Inscriptions, etc. around an object are automatically added to the group:

To remove an object from the active group, use the Toggle group tool. For
example, bring up the marking menu on the object, and select the "Toggle group"
entry. If the object is a member of the active group, it is removed from the group (and
dimmed).

Groups can be used for several different purposes:
• Changing attributes
• Moving groups of elements
• Cloning groups of elements
• Deleting groups of elements

Groups can be used to change attributes on several objects at the same time. If,
for instance, a number of places, transitions and arcs are placed in a group, you can
change the color of all of them at the same time. Groups can also be used to move
several different objects at one time. To move a group of objects, simply drag one of
the objects in the group, and all other objects in the group will be moved at the same
time. Deleting the member elements of a group works similarly to the other
operations. Normal groups only span a single page, but with global groups is it
possible to manipulate elements across all pages in the net.

Cloning of groups of elements is an extension of the basic cloning, where more
than one element is cloned at the same time. If a group is selected, and the target of
the clone tool is a member of the selected group, then the elements in the group will
be cloned. As with cloning of individual elements, the result is a cursor with the
cloned elements attached that may be used to insert them one or more times. Cloning

 40

of groups is a very useful operation for creation of nets with a regular structure or
reusing of early created nets. In the example of Ethernet model in Appendices it is
very convenient to assemble the model of Switch by cloning submodels of a single
port. We toggled the grope with the elements of the first port:

And simply clone it to create models of other ports:

The only thing we need is to move group in the appropriate location and to correct
the names of elements.

Notice that, every cloned element can be placed in an arbitrary open net. In this
way cloned elements can be transported across net. The same goes for groups of
elements, meaning you can clone entire groups of elements to other nets.

9. Fusion Places

Fusion places provide both opportunities: to make your model more vivid and
to settle connections between pages of net. Fusion places may be considered as a first
step to hierarchical Petri nets so item “Fusion” is situated in Hierarchy palette.

Each place of a fusion set is supplied with the fusion tag of the same name; all
the places in a fusion set are considered by CPN Tools as the same place. Visually the
changing of marking for one of the places causes in the changing of other fusion
places marking. Fusion places should be of the same color set. Let us consider the
example of Ethernet switch model:

 41

f(src,dst,nf)

f(src,dst,nf)

(target,port)

f(src,dst,nf)

f(src,dst,nf)

f(src,dst,nf)

f(src,dst,nf)

(src,dst,nf,port)

(src,dst,nf,3)

avail

avail

avail

avail

avail

avail

(target,port)

(target,port)

(src,dst,nf,port)

(src,dst,nf,1)

(src,dst,nf,port)

(src,dst,nf,2)

In1

[dst=target]

@+5

Out1

@+5

In2

[dst=target]

@+5

Out2

@+5

In3

[dst=target]

@+5

Out3

@+5

Port1

Port2

Port3

Model of Switch

Port1In

seg

I/O

Port1Out

seg

I/O

Port2In

seg

I/O

Port2Out

seg

I/O

Port3In

seg

I/O

Port3Out

seg

I/O

SwitchTable

swi

1`(1,1)++1`(2,1)++1`(3,2)++
1`(4,2)++1`(5,3)++1`(6,3)++1`(7,3)

Buffer

swf

Frames are extracted from the input channel of a source port Port*In, put to
Buffer and then directed to output channel of destination port Port*Out. To find
the number of destination port switching table SwitchTable is used. The model
contains a lot of crossed lines and at the increase of ports’ number becomes
unreadable. The same model is constructed in Appendix A2 using two fusion sets:
SwitchTable and Buffer.

f(src,dst,nf)

f(src,dst,nf)

(target,port)

f(src,dst,nf)

f(src,dst,nf)

(src,dst,nf,port)

(src,dst,nf,1)

f(src,dst,nf)

f(src,dst,nf)

(target,port)

(target,port)

(src,dst,nf,port)

(src,dst,nf,port)

(src,dst,nf,2)

(src,dst,nf,3)

avail

avail

avail

avail

avail

avail

In1

[dst=target]

@+5

Out1

@+5

In2

[dst=target]

@+5

Out2

@+5

In3

[dst=target]

@+5

Out3

@+5

Port1

Port2

Port3

Model of Switch

Port1In

seg

I/O

Port1Out

seg

I/O

Port2In

seg

I/O

Port2Out

seg

I/O

Port3In

seg

I/O

Port3Out

seg

I/O

SwTa1

swi

1`(1,1)++1`(2,1)++1`(3,2)++1`(4,2)++1`(5,3)++1`(6,3)++1`(7,3)

SwitchTable

Bu1

swf

Buffer

SwTa2

swi

1`(1,1)++1`(2,1)++1`(3,2)++1`(4,2)++1`(5,3)++1`(6,3)++1`(7,3)

SwitchTable

SwTa3

swi

1`(1,1)++1`(2,1)++1`(3,2)++1`(4,2)++1`(5,3)++1`(6,3)++1`(7,3)

SwitchTable

Bu2

swf

Buffer

Bu3

swf

Buffer

The model can be easily expanded for an arbitrary number of ports using cloning of
port’s group.

Fusion places are created using the Assign fusion set tool from the
Hierarchy tools. After applying the tool, a fusion tag is added to the place. The tag
is set in a default position with a default name for the fusion set. The tag can be
repositioned, and the name of the fusion set can be changed by editing the text in the
fusion tag. The members of a fusion set can be located by placing the cursor over a
fusion tag. An aqua aura indicates which place the fusion tag belongs to. Pink auras
and highlights indicate other places in the same fusion set and the pages which
contain these places. Fusion sets may contain places from several different pages.

 42

10. Hierarchical Models’ Construction

The usage of hierarchy is very common for engineering. A telecommunication
device consists of blocks, blocks consist of boards, boards consist of chips,
capacities, resistances etc. In programming a program is assembled of modules
(procedures, functions). Hierarchical model means a nested construction: net inside
net. Generally any element of Petri net may be substituted by nested net but CPN
Tools uses substitution of transitions only.

10.1. Basics of Transition Substitution

At the substitution of transition we have a pair of nets at least. A transition of
upper-level net is substituted by lower-level net. Let us consider the model of LAN
described in Appendices. At the top page LAN transition WS3 is substituted by net
WS:

Fragment of LAN Model

The substitution is pointed by tag WS drawn about transition WS3. Logically, the
behavior of a whole net is the same as subnet WS was put inside net LAN:

 43

Places of lower-level net which are used in connection with upper-level net are
named contact places or ports and marked with special tag (I/O). Corresponding
places of upper-level net are named sockets. In the above example we have ports
LANin, LANout, Own in page WS and sockets p3out, p3in, aWS3 in page
LAN.

To prepare the substitution of transition we should:
− create both upper-level and lower-level nets situated in separate pages of

model (LAN, WS);
− point out ports of lower-level net (LANin, LANout, Own);
− provide the number of sockets equaling to number of ports (3).
To make the substitution of transition we should:
− assign net to transition (WS3->WS);
− assign ports to sockets (LANin->p3out, LANout->p3in, Own-

>aWS3).
Ports of lower-level net are pointed out using Hierarchy palette:

Three types of tags are available: In, Out, I/O. Ports of type In are used when
the corresponding place has only input arcs in upper-level net and only output arcs in
lower-level net. Ports of type Out are used when the corresponding place has only
output arcs in upper-level net and only input arcs in lower-level net. They may be
considered as input/output variables in programming language routine. When there
are no restrictions on arcs, port of type I/O is used. Such a place may have incidental
arcs of both directions in upper-level net as well as in lower-level net.

To assign page to transition the second tool of Hierarchy palette is used.
You should click with it on transition (WS3) and then on subpage (WS). The
correspondent tag of subpage will be attached to transition.

The assignment of ports to sockets is more complicated because the operation
should be executed for each port of subpage. The third tool of Hierarchy palette
“assign a port to a socket” is used. You should have both pages on the screen. To
make the assignment of a port you should click on it and then click on the
corresponding socket.

 Notice that the usage of hierarchical nets makes the development of models
considerably easy as the usage of modules in programming languages. At first it
allows the hiding of details and the management of models’ complexity. At second, it
provides reusage of submodels. For instance, in the example of LAN model there are
5 workstations and 2 servers but we have single subpages for workstation (WS) and
server (S).

 44

10.2. Bottom-up Development

When creating a hierarchical net "bottom-up", you start by creating separate
pages. In contrast to top-down development, this approach involves creating the most
detailed parts of the net first. Later, existing pages are set as subpages for substitution
transitions as it was described in the previous subsection. It looks like usage of
libraries in programming languages.

For instance, in LAN example you should create pages WS, S, MWS, SWI
then create top page LAN and then assign substitution of transitions (WS1-WS4-
>WS, S1-S4->S, WS5->MWS) and corresponding port/socket mapping.

10.3. Top-down Development

When creating a hierarchical net "top-down", you start by creating the top-level
page that shows the overview of the subpages and how they are connected. For
instance, in LAN example we should create top page LAN first. There is special
operation “move a transition to a subpage” in Hierarchy palette (the first tool). As
the result subpage tag is added to the transition, which is now a substitution
transition. A new page is created with a copy of the places surrounding the target
transition. The page is named after the target transition. This page is a pattern for
creation of lover-level net. For instance applied to WS3 in LAN example it creates the
pattern:

WS3

p3out
seg
avail

I/O
p3in

seg
avail

I/O

aWS3
mac

1`5

I/O

You should edit the pattern to create the submodel of workstation. For instance,
rename page WS3 in WS, rename its places p3out in LANin, p3in in LANout,
aWS3 in Own, delete transition WS3 and draw the net WS using created ports.
Described tool executes assignment of subpage tag, port type tags and assignment of
ports to sockets automatically. So it allows you the avoidance of a lot routine
operations.

Notice that, the development of models requires both bottom-up and top-down
approaches as tool “move a transition to a subpage” may be applied only once for
each required subpage. For instance in such a way we may create SWI, MWS then
WS for WS1 and S for S1. But for WS2-WS4 and S2 we use early created WS and S
in bottom-up way.

 45

11. Analyzing a CP-net

CPN Tools provides two basic ways of models’ analysis: simulation of net
behavior and generation of state space. Moreover, you should be confident that model
is adequate to the object and works in the proper way. That involves the preliminary
stage very common for programming languages and usually named debugging. At
this stage you acquire confidence that your model works properly and correct errors.
We propose also a special way for models’ analysis named measuring fragments. For
estimation of models’ characteristics we create special fragments of nets which
calculate characteristics during simulation. Such a fragment is created in Appendix
A5 for estimation of Ethernet response time.

11.1. Debugging of Models

Debugging of models involves syntax checking and step-by-step simulation.
CPN Tools automatically syntax checks your nets as you create them or when you
load in a net. You can see by color indications how far the check has gotten. The
color indications are shown in the index, underlining the name of the page where the
color belongs. If the page is open in a binder, the color is also shown in the page tab
at the top of the page, and on the CP-net element where the color belongs. The orange
aura indicates that an element is not currently checked. When you load a net, the
syntax check takes a couple of minutes to complete. During this phase, the elements
will change aura from orange to yellow to no aura (or red, if there is an error). If the
orange aura stays, it is probably because either there is something missing or there is
an error on a related net element. A yellow glow indicates that the
place/transition/arc/page/net is currently being checked. Declarations are checked
starting from the top. If a declaration depends on a later declaration, it will get an
error saying the other declarations is not defined. Declarations with errors are
rechecked when a change is made in any declaration. A red aura means the element
has been checked but had an error. A speech bubble should appear with the exact
error message. Elements connected to the element with the error, e.g. transitions
connected to a place with errors, are not checked until the error is fixed. If there is an
error in the declarations, the declaration with the error will be underlined with red.
The net entry and all affected pages will also be underlined with red. To see the error
message for a declaration with an error, move the mouse over the declaration.

Step-by-step simulation described in Section 4.3 is used to trace the way of
tokens in your model. For instance, you may trace frames in the Ethernet model
described in Appendices on their way from workstation to server and backwards. You
can also choose manually the bindings of firing transition parameters, for instance,
make the choice of input token among available. For further debugging the execution
of specified number of transitions is useful to estimate the behavior of the model on
larger intervals of time.

 46

11.2. State Space Analysis

State space of colored Petri net is more complicated than reachability set or
reachability graph of classical Petri net. In classical Petri net marking of places is
represented by vector of natural numbers but in colored Petri net by vector of multi-
sets (timed multi-sets).

The analysis of state space is possible for rather small or simple models
because of well-known effect of state space explosion. The number of states for l-
bounded Petri net with m places is estimated as lm. In telecommunications the
analysis of state space is applied mainly at verification of protocols when we need
knowledge about formal properties of nets such as boundedness, safeness, liveness
etc.

State Space palette has the form:

It contains such tools as:
- Enter State Space;
- Calculate State Space;
- Calculate SCC graph;
- State Space to Sim;
- Sim to State Space;
- Save Report.

Before a state space can be calculated and analyzed, it is necessary to generate
the state space code. This code is generated when you apply
Enter the state space tool. Entering the state space tool will take some
time. Then, if the state space is expected to be small, you can simply apply the
Calculate state space tool to a sheet containing a page from the net. If the
state space is expected to be large, you may need to change the options for the
Calculate state space tool. The options for the Calculate state
space tool allow you to determine when the calculation of a state space stops. In
addition the strongly connected components (SCC) of state space graph may be
calculated using corresponding tool. Calculated state space is stored in CPN Tools
temporary files. There are two ways to analyze it:

- save report into a file;
- create State Space queries.

To save a report, you have apply the Save state space report tool to a
sheet containing a page from the net. You enter the name of report file. The contents
of the report are determined by the options for the Save state space report

 47

tool. Queries are used to investigate properties of a CP-net by writing special CPN
ML functions. They are quite complicated and use special predefined functions. CPN
Help contains a reference to State Space Queries Manual.

Let us consider the well-known example of dining philosophers:

p

p

Chopsticks(p)

p

Chopsticks(p)

p

Take
Chopsticks

Put Down
Chopsticks

val n = 5;

colset PH = index ph with 1..n;

colset CS = index cs with 1..n;

var p: PH;

fun Chopsticks(ph(i)) =
1`cs(i) ++ 1`cs(if i=n then 1 else i+1);

Eat

PH

Think

PH

PH.all()

5 1`ph(1)++
1`ph(2)++
1`ph(3)++
1`ph(4)++
1`ph(5)

Unused
Chopsticks

CS

CS.all()

5 1`cs(1)++
1`cs(2)++
1`cs(3)++
1`cs(4)++
1`cs(5)

The model in CPN Tools has the compact representation due to usage indexed color
sets for description of philosophers (PH) and chopsticks (CS) and function
Chipsticks that returns the numbers of sticks used by philosopher ph(i).

The saved report has the form:

 Statistics
--
 State Space
 Nodes: 11
 Arcs: 30
 Secs: 0
 Status: Full

 Scc Graph
 Nodes: 1
 Arcs: 0
 Secs: 0

 Boundedness Properties
--
 Best Integers Bounds Upper Lower
 Page'Eat 1 2 0
 Page'Think 1 5 3
 Page'Unused_Chopsticks 1 5 1

 Best Upper Multi-set Bounds
 Page'Eat 1 1`ph(1)++

1`ph(2)++
1`ph(3)++
1`ph(4)++
1`ph(5)

 Page'Think 1 1`ph(1)++
1`ph(2)++
1`ph(3)++
1`ph(4)++
1`ph(5)

 Page'Unused_Chopsticks 1
 1`cs(1)++

 48

1`cs(2)++
1`cs(3)++
1`cs(4)++
1`cs(5)

 Best Lower Multi-set Bounds
 Page'Eat 1 empty
 Page'Think 1 empty
 Page'Unused_Chopsticks 1 empty

 Home Properties
--
 Home Markings: All

 Liveness Properties
--
 Dead Markings: None
 Dead Transitions Instances: None

 Live Transitions Instances: All

 Fairness Properties
--
 Page'Put_Down_Chopsticks 1
 Impartial
 Page'Take_Chopsticks 1 Impartial
--

Statistics section describes the size of state space and SCC graph. Boundedness
section gives upper and lover bounds of markings in numerical and multi-set forms.
Home properties section lists home markings. Liveness properties section describes
deadlocks and live transitions. Fairness properties section describes type of net’s
fairness.

Notice that CPN Tools does not give a way to save complete generated state
space. It is kept internally in CPN Tools temporary files. To investigate it beyond the
bounds of the standard report you should write special queries to state space in CPN
ML language.

11.3. Simulation of Net Behavior

CPN Tools may be used as a typical simulation system. When behavior of the
net is rather complicated we may simulate it on large intervals of time and make
conclusions about characteristics of the modeled system. Especially when random
functions are widely used in a model we are more interested in its statistical
properties than in its state space. For instance, we may simulate behavior of Ethernet
model during one day of real time and make conclusions about such its characteristics
as average response time, percentage of collisions etc.

From the point of view of standard simulation system CPN Tools gives us
scarce facilities for such analysis. It has no tools for time management except of fast
execution of a given number of steps in Simulation palette. But we can choose
huge enough number of steps to provide time durations corresponding to hours of real
time. Moreover, CPN Tools does not calculate elementary statistical information such
as maximal, minimal and average number of tokens in places, frequencies of

 49

transitions’ firing etc. But it gives us the language to describe the processes of
accumulation and calculation of characteristics. It is the same language of colored
Petri nets and it may be applied for estimation of statistical characteristics of models.
Such additional nets are named measuring fragments and studied in the next Section.

But simulation itself implies special consideration of experiments with model.
The first thing is the scaling of times. Time in CPN Tools is measured in Model Time
Units (MTU) which has no dimension and represented as a natural number. That’s
why we are interested in the scaling of times to make the model realistic. The
example of times scaling is described in Appendix A7 for Ethernet model. We
acquire times in real units (ms, ns) from the description of the hardware and software.
Then we choose MTU as the smallest time duration. But for future development of
the model it is reasonable to choose MTU smaller. For representation more fast
equipment in future. For instance, the smallest delay for Ethernet model is 500 ns but
MTU equaling to 100 ns has been chosen. Then all the times of the model were
recalculated in MTU. For instance, 200 ms corresponds to 200000 ns / 100 ns = 2000
MTU. After obtaining the result times should be recalculated in real time units. For
instance, average response time equals to 389 MTU or 38900 ns or 38.9 ms.

The second thing is the existence of the state stable mode of model’s behavior.
If the state stable mode exists the model is balanced. The increase of modeling time
duration does not cause the significant change of its statistical characteristics. The
simplest way to determine state stable mode is the sequential enlargement of
modeling time duration. If characteristics do not change after certain moment of
model time then the state stable mode has been achieved. Notice that state stable
mode can not exist because source network is unbalanced; for instance, 100 Mbps
flow directed to 10 Mbps network.

The third thing is the estimation of averages of characteristics in state stable
mode. Suppose our model calculates characteristics. But the results taken in a single
experiment with model are not valuable. A few experiments should be provided with
the model and according to mathematical statistics its number should be about 20. In
more complicated estimations the confidence interval should be taken into
consideration.

11.4. Measuring Fragments

As the language of colored Petri nets constitutes a complete algorithmic system
it may by applied for accumulation and calculation of statistical characteristics. Extra
parts of net added to the source model for accumulation and calculation of statistical
characteristics are named measuring fragments. Let us study a few simple measuring
fragments. Let we have a buffer and transition put increasing its marking and
transition get decreasing its marking:

f f
put getbuffer

frame

 50

We can easily calculate the current number of tokens in buffer with the following
fragment:

f f

i+1
i

i

i-1

put getbuffer

frame

count

INT

0

To calculate the maximal number of tokens in place buffer the following fragment
may be used:

f f

i+1
i

i

i-1

m

if i+1>m then i+1 else m

put getbuffer

frame

count

INT

0

max

INT

0

To calculate the average number of tokens, time intervals should be taken into
consideration because average of distribution is calculated with formulae:

ac=(c1*dt1 + c2 *dt2 + … + ck*dtk) / dt

where ac is the average, ci is the value on time interval dti and dt is the total
interval of time. The following fragment calculates average number of tokens in place
buffer:

f f

i+1
i

i

i-1

m

m+i*(cT()-pt)

pt

cT()

a

if cT()>0 then (m+i*(cT()-pt)) div cT() else 0

m+i*(cT()-pt)

cT()

if cT()>0 then (m+i*(cT()-pt)) div cT() else 0

m

pt

a

f f1
put

@+10

get

@+20

buffer

frame

count

INT

0

sum

INT

0

prevt

INT

0

average

INT

0

clock

frame

fr

clock1

frame

fr

 51

The recalculations are started both: at the increase (put) and at the decrease (get) of
tokens number. Function cT() as described in Appendix A2 returns the current value
of model time. Place sum keeps the current sum of products. Place prevt keeps the
value of previous moment of time when the marking of place buffer had been
changed. Place average keeps the average number of tokens in the place buffer.

More interesting example of measuring fragment for estimation of Ethernet
response time is described in Appendix A5. Measuring fragments may be designed
for estimation of networks’ throughput as well as QoS characteristics.

12. Additional Features of CPN Tools

There are a lot of more specific features of CPN Tools described in online help
as well as in separate documents, for instance, in the manual on ML language. This
section contains an overview of most significant of them for modeling of
telecommunication systems.

12.1. Unions

A union color sets is a disjoining union of previously declared color sets. It is
very hard limitation that place contains tokens of the same color set; special union
color set helps you to overcome this limitation. In union color set you may combine
different color sets of tokens which you want to collect in the same place.

The declaration has the syntax:

colset name = union id1[:name1] + id2[:name2] + ... + idn[:namen];

If namei is omitted then idi is treated as a new value, and it can be referred to
simply as idi. Simple operators are used to retrieve values of concrete color set in
union:

idi v or idi(v)

where v has type namei.
In the example of Ethernet network described in Appendices union color set is

used to model segments of Ethernet. If collisions are not considered that is the
common case in completely switched Ethernet, then a segment is either idle or
transmitting a frame. To distinguish this cases special union seg was described:

colset seg = union f:frm + avail timed;

Unit avail means that segment is free and available for transmission. In other case
segment is transmitting a frame f. There is no simple way in CPN Tools to check a
place on absence of tokens (inhibitor arcs) so color set seg is used. Let us consider
the submodel of switch (fig. 4). Each input channel of switch ports Port*In
extracts frame f and puts instead of it label avail. It means that transmission of

 52

frame has finished and segment is available and ready for transmission of another
frame. Each output channel of switch ports Port*Out waits for label avail before
transmission, extracts this label and puts transmitting frame instead of it.

12.2. Lists

List color set constitutes the sequence of elements of the same color set. List is
a variable-length color set. Standard functions allow the access to both ends of a list.
To process elements inside list recursive functions should be used.

Declaration of list has the syntax:

colset name = list name0 [with int-exp1..int-exp2];

The with clause specifies the minimum and maximum length of the lists. Values of
list color set have the form:

[v1, v2, ..., vn] where vi has type name0 for i=1..n.

The following operations are available for lists:

nil empty list (same as [])
e::l prepend element e as head of list l
l_1^^l_2 concatenate the two lists l_1 and l_2
hd l head, the first element of the list l
tl l tail, list with exception of first element
length l length of list l
rev l reverse list l

map f l use function f on each element in list l and returns a list with all the
results

List.nth(l,n) nth element in list, where 0 <= n < length l
List.take(l,n) returns first n elements of list l
List.drop(l,n) returns what is left after dropping first n elements of list l
List.exists p l returns true if p is true for some element in list l
List.null l returns true if list l is empty

Usual place of CPN tools provides the discipline of random access because an
arbitrary valid token may be taken by transition:

f ff
put get

var f: frame;

buffer

frame

frames

frame

But telecommunication devices widely use queues with FIFO and priority disciplines,
stacks with LIFO discipline etc. List color set helps us to organize the required
discipline. Let us consider an example of FIFO queue creation:

 53

lf^^[f] f::lff

lf
lf

put get

colset lframe=list frame; var lf: lframe;

buffer

lframe

[]

frames

frame

You may put concrete frames into place frames and trace the behavior of this net to
acquire the comprehension of list color set. Notice that in the last case place buffer
contains only one token and this token is the list of frames. In the initial marking the
list is empty [].

In CPN Tools help LIFO and priority disciplines are considered. List allows
also the representation of inhibitor arcs; corresponding examples are presented in
CPN Tools help. More complicated examples with recursive functions usage are
studied in paper [5].

 54

Appendices:

An Evaluation of Network Response Time
using a Colored Petri Net Model of Switched LAN

A1. Switched LAN

Recently the Ethernet has become the most widespread LAN. With gigabit technology it started
a new stage of popularity. And this is not the limit yet. Hubs are dumb passive equipment aimed
only at the connection of devices as wires. The base element of the Local Area Network (LAN)
Ethernet (IEEE 802.x) is a switch of frames. Logically a switch is constituted of a set of ports. LAN
segment (for example, made up via hub) or terminal equipment such as workstation or server may
be attached to each port. The task of a switch is the forwarding of incoming frame to the port that
the target device is connected to. The usage of a switch allows for a decrease in quantity of
collisions so each frame is transmitted only to the target port and results in an increased bandwidth.
Moreover the quality of information protection rises with a reduction of ability to overhear traffic.
The scheme of sample switched network is presented in Fig. 1.

Fig. 1. Scheme of sample switched LAN

As a rule, the Ethernet works in a full-duplex mode now, this allows simultaneous transmission
in both directions. To determine the target port number for the incoming frame a static or dynamic
switching table is used. This table contains the port number for each known Media Access Control
(MAC) address. Only static switching tables will be modeled in the present paper.

A2. Model of LAN

A model of sample LAN with topology, shown in Fig. 1, is represented in Fig. 2. Let us describe
the model constructed. Notice that the model is represented with colored Petri net and consists of
places, drawn as circles (ellipses), transitions, drawn as bars, and arcs. Dynamic elements of the
model, represented by tokens, are situated in places and move as a result of the transitions’ firing.

 55

The elements of this model are sub models of: Switch (SWI), Server (S), Workstation (WS) and
Measuring Workstation (MWS). Workstations WS1-WS4 are the same type exactly WS, whereas
workstation WS5 is the type MWS. It implements the measuring of network response time. Servers
S1 and S2 are the same type exactly S. Hubs are a passive equipment and have not an independent
model representation. The function of hubs is modelled by common use of the corresponding places
p*in and p*out by all the attached devices. The model does not represent the collisions.

Each server and workstation has it’s own MAC address represented in places aS*, aWS*. A
switch has separate places for input (p*in) and output (p*out) frames for each port. It represents the
full-duplex mode of work. Bidirected arcs are used to model the carrier detection procedures. One
of the arcs checks the state of the channel, while another implements the transmission.

Fig. 2. Model of sample LAN

All the declarations of color sets (colset), variables (var) and functions (fun) used in the model

are represented in Fig. 3. The Ethernet MAC address is modeled with integer number (color mac).
The frame is represented by a triple frm, which contains source (src) and destination (dst)
addresses, and also a special field nfrm to enumerate the frames for the calculation of response
time. We abstract of other fields of frame stipulated by standard of Ethernet. The color seg
represents unidirectional channel and may be either available for transmission (avail), or busy with
transmission of a frame (f.frm). It is represented with a union type of color. Notice that the
descriptor timed is used for tokens, which take part in timed operations such as delays or
timestamps.

 56

colset mac = INT timed;
colset portnum = INT;
colset nfrm = INT;
colset sfrm = product nfrm * INT timed;
colset frm = product mac * mac * nfrm timed;
colset seg = union f:frm + avail timed;
colset swi = product mac * portnum;
colset swf = product mac * mac * nfrm * portnum timed;
colset remsv = product mac * nfrm timed;
var src, dst, target: mac;
var port: portnum;
var nf, rnf: nfrm;
var t1, t2, s, q, r: INT;
colset Delta = int with 1000..2000;
fun Delay() = Delta.ran();
colset dex = int with 100..200;
fun Dexec() = dex.ran();
colset dse = int with 10..20;
fun Dsend() = dse.ran();
colset nse = int with 10..20;
fun Nsend() = nse.ran();
fun cT()=IntInf.toInt(!CPN'Time.model_time)

Fig. 3. Declarations

The marking of places is represented with multi-sets in CPN Tools. Each element belongs to a

multi-set with defined multiplicity, in other words – in a few copies. For instance, the initial
marking of the place aWS2 is 1`4. It means that place aWS2 contains 1 token with a value of 4.
The union of tokens is represented by a double plus sign (++). Tokens of timed color have the form
x @ t which means that token x may be involved only after a moment of time t. So, notation @+d
is used to represent the delay with the interval d.

A3. Model of Switch

Let us construct a model for a given static switching table. We consider the separate input and
output buffers of frames for each port and common buffer of the switched frames. The model of
switch (SWI) is presented in Fig. 4. The hosts’ disposition according to Fig. 1 was used for the
initial marking of a switching table.

The color swi represents records of switching table. It maps each known MAC address (mac) to
the number of port (nport). The color swf describes the switched frames, waiting for output buffer
allocation. The field portnum stores the number of the target port. The places Port*In and
Port*Out represent input and output buffers of the ports correspondingly. The fusion place
SwitchTable models the switching table; each token in this place represents the record of the
switching table. For instance, token 1`(4,2) of the initial marking means that the host with MAC
address 4 is attached to port 2. The fusion place Buffer corresponds to the switched frames’ buffer.
Notice that a fusion place (such as SwitchTable or Buffer) represents a set of places. The fusion
place SwitchTable is represented with places SwTa1, SwTa2, SwTa3. The fusion place Buffer is
represented with places Bu1, Bu2, Bu3. It allows the convenient modelling of switches with an
arbitrary number of ports avoiding numerous cross lines.

The transitions In* model the processing of input frames. The frame is extracted from the input
buffer only in cases where the switching table contains a record with an address that equals to the
destination address of the frame (dst=target); during the frame displacement the target port number
(port) is stored in the buffer. The transitions Out* model the displacement of switched frames to
the output ports’ buffers. The inscriptions of input arcs check the number of the port. The fixed time

 57

delays (@+5) are assigned to the operations of the switching and the writing of the frame to the
output buffer.

Fig. 4. Model of switch

It is necessary to explain the CSMA procedures of LAN access in more detail. When a frame is

extracted from the input buffer by transition In*, it is replaced with the label avail. The label avail
indicates that the channel is free and available for transmission. Before the transition Out* sends a
frame into a port, it analyses if the channel is available by checking the token avail.

Notice that places Port*In and Port*Out are contact ones. They are pointed out with an I/O
label. Contact places are used for the construction of hierarchical nets with substitution of
transition. For example, the transition SWI in the top-level page of model (Fig. 2) is substituted by
a whole net SWI represented in Fig. 3. Places Port*In and Port*Out are mapped into places p*in
and p*out correspondingly.

A4. Models of Workstation and Server

To investigate the frames’ flow transmitting through LAN and to estimate the network response
time it is necessary to construct the models of terminal devices attached to the network. Regarding
the peculiarity of the traffic’s form we shall separate workstations and servers. For an accepted
degree of elaboration we consider periodically repeated requests of workstations to servers with
random uniformly distributed delays. On reply to an accepted request a server sends a few packets
to the address of the requested workstation. The number of packets sent and the time delays are
uniformly distributed random values.

 58

Fig. 5. Model of workstation

A model of workstation (WS) is represented in Fig. 5. The places LANin and LANout model

the input and output channels of the local area network correspondingly. The workstation listens to
the network by means of transition Receive that receives frames with the destination address, which
is equal to the own address of the workstation (dst=target) saved in the place Own. The processing
of received frames is represented by the simple absorption of them. The workstation sends periodic
requests to servers by means of transition Send. The servers’ addresses are held in the place
Remote. After the sending of a request the usage of the server’s address is locked by the random
time delay given by the function Delay(). The sending of the frame is implemented only if the LAN
segment is free. It operates by checking place LANout for a token avail. In such a manner the
workstation interacts with a few servers holding their addresses in the place Remote.

Notice that the third field of frame, named nfrm, is not used by the ordinary workstation WS.
The workstation only assigns the value of a unit to it. This field is used by a special measuring
workstation MWS. The copies of the described model WS represent workstations WS1-WS4. To
identify each workstation uniquely, the contact place Own is used. This place is shown also in the
top-level page (Fig. 2) and contains the MAC address of host.

Fig. 6. Model of server

A model of server (S) is represented in Fig. 6. The listening of the network is similar to the

model of the workstation but it is distinct in that the frame’s source address is held in the place
Remote. The transition Exec models the execution of the workstation’s request by a server. As a
result of the request execution the server generates a random number Nsend() of the response
frames, which are held in the place Reply. Then these frames are transmitted into the network by

 59

the transition Send. Notice that the request number nf is stored in the place Remote also. It allows
us to identify the response with the same number as the request.

A5. Model of Measuring Workstation

A model of the measuring workstation (MWS) is represented in Fig. 7. In essence, it is an early
considered model of workstation WS, supplied with the measuring elements (the measuring
elements are drawn in magenta).

Let us consider the measuring elements in more detail. Each frame of a workstation’s request is
enumerated with a unique number contained in the place num. The time, when the request was sent,
is stored in the place nSnd. The function cT() calculates the current value of the model’s time. The
place nSnd stores a pair: the frame’s number nf and the time of request cT().

The place return stores the timestamps of all the returned frames. As the network response time
we consider the interval of time between the sending of the request and receiving the first frame of
response. This value is stored in place NRTs for each responded request. The transition IsFirst
determines the first frame of response. The inscription of the arc, connecting the transition IsFirst
with the place NRTs, calculates the response time (t2-t1).

A residuary part of the measuring elements calculates the average response time. The places sum
and quant accumulate the sum of response times and the quantity of accepted responses
correspondingly. The arrival of a new response is sensed by the place new and initiates the
recalculation of average response time with the transition Culc. The result is stored in the place
NRTime.

Fig. 7. Model of measuring workstation

 60

A6. Evaluation Technique

The model constructed was debugged and tested in a step-by-step mode of simulation. For these
purposes the frame generated by the workstation was traced through the network to the server and
back. Also we observed the behavior of the model in the process of automated simulation with a
display of net’s dynamics – in the mode of the so-called game of tokens. It allows us to estimate the
model with a glance at the top-level page and at sub pages during simulation.

To estimate the network response time precisely, rather huge intervals of model time are
required. It is convenient for such purposes to use the simulation mode without displaying
intermediate marking aimed at the accumulation of statistics.

A snapshot of the measuring workstation model is represented in Fig. 8. The rectangular labels
(drawn in bright green) describe the current marking of the simulation system; the circular labels
contain the number of tokens. The place LANin contains frame (1,5,1). The place LANout
represents the available state of the channel avail. The number of the next request, according to the
marking of place num, is 7. The place return indicates that 83 frames of responses have arrived.
The place NRTs contains the response times for each of the 6 responded requests. For instance, the
network response time for request 5 equals to 235. It should be calculated easily, that the average
network response time 389 in the place NRTime equals to 2337/6 according to the markings of the
places sum and quant.

A7. Parameters of Model

The right choice of time unit for model time measurement is a key question for an adequate
model construction as well as the calculation of timed delays for elements of the model. It requires
an accurate consideration of the real network hardware and software characteristics.

Fig. 8. Estimation of network response time

 61

The scheme shown in Fig. 1 represents a fragment of a railway dispatch centre LAN supplied
with special railway CAM software GID Ural. The core of the system constitutes a pair of mirror
servers S1 and S2. The workstations WS1-WS5 are situated in the workplaces of railway
dispatchers.

We have to consider the performance of the concrete LAN switch and LAN adapters to calculate
the timed delays of transitions In*, Out*, Send, Receive. Moreover, the peculiarities of client-
server interaction of GID Ural software ought to be considered for the estimation of such
parameters as delay between the requests Delta and the time of request execution dex. Since the
unit of information transmitting through net is represented with a frame, we have to express the
lengths of messages in numbers of frames. For these purposes the maximal length of an Ethernet
frame equaling 1.5 Kb was chosen.

The types of LAN hardware used are represented in Table 1.

Table 1. Types of hardware

Device Type
LAN adapter Intel EtherExpress 10/100
LAN switch Intel SS101TX8EU
Server HP Brio BA600
Workstation HP Brio BA200

In Table 2 the parameters of the model described are represented. LAN switch and adapter
operations are modelled with fixed delays so they are small enough in the comparison with client-
server interaction times. Moreover, in reliable Ethernet frames of maximal length are transmitted
mainly, since the time of frame’s processing is a fixed value. Stochastic variables are represented
with uniform distribution, which corresponds to Ural GID software behavior. The smallest timed
value is the LAN switch time of read/write frame operation. But for the purposes of future
representation of faster equipment we choose the unit of model time (MTU) equaling 100 ns.

Table 2. Parameters of model

Parameter Variable/Element Real value Model value
LAN switch read frame delay In* 500 ns 5
LAN switch write frame delay Out* 500 ns 5
LAN adapter read frame delay Receive 1 ms 10
LAN adapter write frame delay Send 1 ms 10
Server’s time of request processing Dex 10-20 ms 100-200
Client’s delay between requests Delta 100-200 ms 1000-2000
Length of request 1.2 Kb 1
Length of response Nse 15-30 Kb 10-20

Thus, the average network response time obtained equals 389 MTU or about 39 ms. This delay
satisfies the requirements of train traffic control.

 62

References

1. Jensen K. Colored Petri Nets - Basic Concepts, Analysis Methods and Practical
Use. – Springer-Verlag, 1997. – Vol. 1-3. – 673 p.
2. Albert K., Jensen K., Shapiro R. Design/CPN: A Tool Package Supporting the
Use of Colored Nets // Petri Net Newsletter. – April 1989. – P. 22-35.
3. Zaitsev D.A. Switched LAN Simulation by Colored Petri Nets // Mathematics
and Computers in Simulation. – 2004. – Vol. 65, № 3. – P. 245-249.
4. Zaitsev D.A. An Evaluation of Network Response Time using a Colored Petri
Net Model of Switched LAN // Proc. of Fifth Workshop and Tutorial on Practical
Use of Colored Petri Nets and the CPN Tools, October 8-11, 2004. – Aarhus
(Denmark). – 2004. – P. 157-167.
5. Zaitsev D.A., Shmeleva T.R. Switched Ethernet Response Time Evaluation via
Colored Petri Net Model // Proc. of International Middle Eastern Multiconference on
Simulation and Modelling, August 28-30, 2006. – Alexandria (Egypt). – 2006. – P.
68-77.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

