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Résumé 
 
Nous introduisons dans ce travail les concepts de (sous-)réseaux de Petri fonctionnels et ceci afin de 
diminuer la complexité temporelle des méthodes d’analyse algébriques des réseaux de Petri. Nous 
montrons tout d’abord que tout sous-réseau fonctionnel s’obtient par composition de sous-réseaux 
fonctionnels minimaux. Puis nous proposons deux techniques de décomposition en sous-réseaux 
minimaux : via la résolution d’équations logiques ou à l’aide d’un algorithme ad-hoc dont la 
complexité temporelle est linéaire. Nous étudions ensuite les propriétés des sous-réseaux fonctionnels. 
Nous montrons que les invariants linéaires des réseaux de Petri s’obtiennent à partir des invariants de 
ses sous-réseaux fonctionnels ; des résultats similaires sont aussi valables pour l’équation 
fondamentale des réseaux de Petri. A partir de ces résultats nous développons une technique d’analyse 
de réseaux de  Petri par décomposition en sous-réseaux fonctionnels. Nous démontrons que le calcul 
compositionnel d’invariants et de solutions de l’équation fondamentale conduit à une accélération 
importante des calculs. A l’aide d’une stratégie particulière de composition dite « séquentielle » nous 
obtenons une nouvelle accélération des calculs. La composition séquentielle est formalisée dans un 
contexte de théorie des graphes et se reformule sous le nom de repliage optimal d’un graphe pondéré. 
Finalement, nous appliquons nos techniques à l’analyse de modèles de protocoles standard de 
télécommunication comme ECMA, TCP, BGP. 
 
 
Mots clefs: réseaux de Petri, réseaux fonctionnels, sous-réseaux fonctionnels, composition 
 
 
 
 
 

Abstract 
 
Functional Petri nets and subnets are introduced and studied for the purpose of speed-up of Petri nets 
analysis with algebraic methods. We show that any functional subnet may be generated by a 
composition of minimal functional subnets. We propose two ways to decompose a Petri net: via 
logical equations solution and with an ad-hoc algorithm, whose complexity is polynomial. Then 
properties of functional subnets are studied. We show that linear invariants of Petri net may be 
computed from invariants of its functional subnets; similar results also hold for the fundamental 
equation of Petri nets. A technique for Petri net analysis using composition of functional subnets is 
also introduced and studied. We show that composition-based calculation of invariants and solutions 
of fundamental equation provides a significant speed-up of computations. For an additional speed-up 
we propose a sequential composition of functional subnets. Sequential composition is formalised in 
the terms of graph theory and was named the optimal collapse of a weighted graph. At last, we apply 
the introduced technique to the analysis of Petri net models of such well-known telecommunication 
protocols as ECMA, TCP, BGP. 
 
Key words: Petri net, functional net, functional subnet, composition 
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1 Introduction 

 
Linear algebra methods [Diaz 01, Murata 89, Reisig 82] based on state equation and 

invariants are a powerful tool for Petri net analysis. But to find linear invariants and to solve 
the fundamental equation of Petri net we have to solve linear diophantine systems in 
nonnegative integer numbers.  All known methods of such systems solution [Colom 90, 
Contejean 97, Kryviy 99, Martinez 82, Schrejver 91, Toudic 82] possess exponential 
complexity with respect to space. It makes the analysis of large-scale models practically 
unfeasible and requires searching of new techniques, which provide essential speed-up of 
computations. 

Two basic approaches were suggested [Berthelot 87] to handle large-scale nets: 
decomposition and reduction. Implementations of these approaches have been designed in the 
different concrete ways. Moreover, decomposition and reduction are applied not only to nets 
but to state space also. Reduction provides a set of rules for decreasing the dimension of net 
preserving its properties. Then usual methods of analysis are applied onto reduced net.  

Decomposition and composition [Singh 86] are abstraction-based methods successfully 
applied in different fields of science and engineering. On the one hand the majority of 
artificial systems are composed out of its components and this process is hierarchical. So 
there is a decomposition of systems provided by the rules of its construction and the set of its 
components and elements [Cortadella 02, Girault 03, Jensen 97, Juhas 04]. The simplest way 
assumes the usage of such decomposition. If we know the properties of components and use 
special rules of composition (synthesis) preserving properties then we construct an ideal 
system [Juan 98, Kotov 84]. But unfortunately, it is not a prevailing case for real-life objects. 
On the other hand, the goals of concrete analysis often require tricky decomposition. 
Decomposition is justified if there are techniques allowing the determination of systems’ 
properties on the base of properties of its components. Thus, decomposition methods always 
assume the following composition of system. 

Let us consider approaches to decomposition used in Petri net theory. The first attempt was 
carried out by M. Hack [Hack 74] to decompose a free-choice net into state machines. The 
conditions for preserving of liveness under the composition of live state machines were 
studied. Berthelot [Berthelot 87] considered decomposition into S- and T- components: S-
component shares transitions with other S-components whereas T-component shares places. 
Behaviour equivalence was studied. Esparza and Silva [Esparza 91] defined two special types 
of composition: synchronization and fusion. They considered synchronization preserving 
liveness of free- choice net. In [Best 92] the decomposition into T-components was applied 
for generation of home-states for free-choice nets. Results concerning the composition of free-
choice nets were collected in the monograph of Desel and Esparza [Desel 95]. Kotov [Kotov 
84] suggested composing Petri nets out of elementary nets using algebraic operations. Such 
nets were named regular nets. Regular nets consider separate sets of input and output places. 
Various kinds of composition preserving liveness, boundness and other properties were 
studied in [Christinsen 00, Lee 02, Lee 00, Souissi 90]. An incremental verification technique 
based on composition of subnets covering a formula of temporal logic was proposed in 
[Haddad 02]. 

In spite of variety of concrete definitions of components the common idea is clear enough: 
to pick out an interface of component and to hide its implementation [Peterson 81]. For T-
components composition is provided by fusion of contact places. Such a composition was 
used for construction of hierarchical high-level nets [Jensen 97, Juhas 04, Latvala 04, Pomello 
04]. Nets containing contact places were also called IO-net [Juan 98]. At investigation of 
controllability of nets it was suggested to distinguish input and output places [Ichikawa 85]. 
Decomposition of reachability and coverability graphs was successfully applied for avoiding 
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the state space explosion for low-level [Valmari 90] and for high-level [Haddad 96, He 91] 
Petri nets. Moreover, rules of state spaces composition at composition of net components 
were studied [Juan 98]. 

Functional Petri nets were introduced in [Zaitsev 97]. Like T-components, functional 
subnets define a partition of a set of transitions. But they distinguish from T-components and 
IO-nets: separate subsets of input and output places are considered and definition does not 
require that a place has only one input and only one output arcs. Moreover, among various 
suggested constraints for incident arcs of input and output places functional nets use the 
strictest:  input places have only input arcs and output places have only output arcs [Zaitsev 
03b].  

Composition of Petri nets out of functional subnets [Zaitsev 04e] was applied successfully 
for speed-up of the processes of invariants’ calculation [Zaitsev 04b] and solution of state 
equation [Zaitsev 04d]. It was shown that the majority of linear algebra methods of Petri net 
properties analysis, reducing to solution of systems of linear diophantine equations and 
inequalities in nonnegative integer numbers, might be efficiently realized with the aid of 
composition.  

Note that application of composition [Zaitsev 04b, 04d] allows the speed-up of solution of 
an arbitrary linear systems, which are solved usually with the aid of methods having the 
calculation complexity exceeding linear, as the complexity of decomposition and subsequent 
composition equals to linear function of dimension of system [Zaitsev 03b, 04e]. However, 
the most significant speed-up we obtain at solution of diophantine systems in nonnegative 
integer numbers, as all known methods of such systems solution [Colom 90, Contejean 97, 
Kryviy 99, Martinez 82, Toudic 82] have exponential complexity. 

In works [Zaitsev 04b , 04d], the simultaneous composition of all the functional subnets of 
a given Petri net was studied. However, in the cases the number of contact places exceed the 
number of places for largest of minimal functional subnets we may obtain an additional 
speed-up of computations at the expense of sequential organization of process of composition 
[Zaitsev 04g].This task is formalized in the terms of graph theory [Berge 01, Harary 71] and 
is named by collapse of weighted graph. The effective methods of its solution are proposed. 
Sequential composition has been applied for acceleration of verification of telecommunication 
protocols [Zaitsev 04c , 04f ].  

The balance of the paper is the following: In Section 2, we introduce and discuss the 
concepts of functional Petri net and functional subnet. In Section 3, we study properties of 
functional subnets and consider the representation of decomposition with a net of functional 
subnets and a graph of decomposition. In Section 4, two different ways of decomposition are 
studied: with the aid of logical equations and using ad-hoc algorithm of linear complexity on 
size of the net. In Section 5, we describe the technique of composition-based calculation of 
linear invariants and show the exponential speed-up of calculations. In Section 6, we obtain 
analogous results for fundamental equation of Petri net. In Section 7, we propose to use 
sequential composition to provide an additional speed-up during solution of systems for 
contact places. Two ways of sequential composition using subgraphs and edges are discussed. 
Then we study in detail the edge sequential composition formalized as the task of edge 
collapse of the weighted graph. In Section 8, we present examples of invariants calculation 
via simultaneous and sequential composition of functional subnets for Petri net models of 
telecommunication protocols ECMA, TCP, BGP. 
 
2 Concepts of Functional Petri Net and Functional Subnet 
 

Concepts of a functional Petri net and a functional subnet are introduced for ordinary Perti 
nets. So they are applicable for various classes of Petri net using bipartite directed graph. 
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Multiplicity of arcs will be considered only at calculation of linear invariants and solution of 
the fundamental equation of Petri net. 
 
Definition 1. Petri net 
A Petri net is a triple  where ),,,( FTPN = },...,,{ 21 mpppP =  is a finite set of places, 

 is a finite set of transitions and },...,,{ 21 ntttT = ∅=TPI , a flow relation PTTPF ××⊆ U  
defines a set of arcs connecting places and transitions.  
 

Sample Petri net  is shown in Fig. 2.1.  1N
 

4t  

 

3t
5p

6t

5t

2t
4p

1t

3p2p

1p

 

 

Fig. 2.1. Petri net  1N
 

We use the special notations for the sets of input, output and incident nodes of a place:  

},),(|{ Fpttp ∈∃=•  , • . }},(|{ Ftptp ∈∃=• ••• = ppp U

 
Similarly we may define the sets of input, output and incident nodes of a transition and 
moreover of an arbitrary subset of places (transitions). 
 
Definition 2. Net with input and output places 
Net with input and output places is a triple ),,,( YXNZ =  where N is Petri net, – input 
places, – output places and the sets of input and output places are disjoint: 

PX ⊆
PY ⊆ ∅=YX I

=
. 

Places from the set of Q  we name internal. Input and output places C  
are named contact ones.  

)(\ YXP U= YX U

 
There are known also definitions [Ichikawa 85, Christinsen 00] of Petri nets with contact 

places which are not subdivided into input and output subsets. 
 

Definition 3. Functional net 
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Functional net is a net with input and output places such that input places do not have input 
arcs and output places do not have output arcs:  . We denote 
functional net as  or 

∅=∈∀ • pXp : ,
),,, FTYQ

∅=∈∀ •pYp :
),,,( YQXNZ = ,(XZ =  with the respect to correspondent 

elements of Petri net N. 



 
Proposition 2.1. An arbitrary Petri net N may be considered as functional net, where the 

set X is formed with sources of net N, and the set Y is formed with drains of net N: 
 

),,,,()( FTYQXNZ = , , , . •• ∩= TTQ QTX \•= QTX \•=
 

Therefore, in further statement, not limiting a generality, we shall consider functional Petri 
nets only allowing the empty sets of contact places. In [Zaitsev 97] the transmission functions 
of functional timed Petri nets were studied and methods of equivalent transformations based 
on algebraic transformations of transmission function were investigated. 
 

Let us consider the following concepts according to standard definitions of graph theory 
[Berge 01, Harary 71]: 

 
− a Petri net ),,( FTPN ′′′=′  is a subnet of N, iff  

))()((,, PTTPFFTTPP ′×′′×′⊆′⊆′⊆′ UI . 
− the subnet induced by the specified sets of nodes ),( TPB ′′  is the subnet 

),,( FTPN ′′′=′ , where  contains all the arcs connecting nodes  in the 
source net:  

F ′ TP ′′,

}),(,,|),{(}),(,,|),{( FptTtPpptFtpTtPptpF ∈′∈′∈∈′∈′∈=′ U . 
− the subnet induced by the specified set of transitions )(TB ′  is the subnet ),( TPB ′′ , 

where 
•• ′∪′=′ TTP . 

 
In other words, together with the transitions from T ′ , subnet )(TB ′  contains all the incident 
places and is induced by these nodes. Further we shall consider mainly all the arcs connecting 
specified nodes in the source net; that is, we shall consider subnets generated by the set of 
nodes. Therefore, for brevity we shall omit flow relation implying the source relation F. 
 
Definition 4. Functional subnet 
A functional net  is a functional subnet of net N and is denoted as , 
iff  is a subnet of N induced by a set 

),,,( YQXNZ ′= NZ f

N ′ T ′ : )(TBN ′=′  and moreover Z is connected with the 
residuary part of the net only by arcs incident with contact places so that input places have 
only input arcs and output places have only output arcs: 
 

∅=′∈∈∀ }\|),{(: TTttpXp , ∅=′∈∈∀ }\|),{(: TTtptYp , 
∅=′∈∧∅=′∈∈∀ }\|),{(}\|),{(: TTtptTTttpQp . 

 
These conditions may be represented also as: 
 

∅=′∩• )\( TTX , , . ∅=′∩• )\( TTY ∅=′∩•• )\( TTQ
 

Notice that in the same way we may introduce the concept of dual functional subnet 
induced by the specified set of places and using contact transitions. But furthermore we prefer 
to consider functional subnet according to Definition 4 for dual Petri net. 
 
A subtraction of Petri net  and its functional subnet N Z ′  is denoted the net ZNZ ′−=′′ , 
where 
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)\,),(\,()\( TTXQYXPYTTBZ ′=′=′′ UU . 
 

Proposition 2.2. (Symmetry).  iff NZ f′ NZN f′− . 
To prove the proposition note that ZN ′−  is connected with residuary part of net only by 

means of contact places and moreover constraints of arcs in definition of functional subnet 
correspond to constraints of arcs in definition of functional net. � 
 
Definition 5. Minimal functional subnet 
Functional subnet  is a minimal iff it does not contain any other functional subnet of 
Petri net N. 

NZ f′

 
Set of minimal functional subnets of Petri net  (Fig. 2.1) is presented in Fig. 2.2. Notice 

that these functional subnets have only input and output places. For example, subnet 
 has , 

1N

{ }),,( 5322 tttBZ = { }32 , ppX = { }54 , ppY = . More complex examples of decomposition 
are considered in Section 7. 
 

1Z  
 

2p  

4p5p

4t6t
1p

4p5p  

3t
2t5t

3p

1t

3p2p  

1p

2Z

3Z

  
Fig. 2.2. Decomposition of Petri net  into minimal functional subnets 1N

 
In the same way we may introduce and study various subclasses of Petri nets with contact 

places. Contact places may be subdivided not only into input and output subsets. We propose 
to classify such nets in the following way. At first, we consider connections of a contact place 
with inside (I) of subnet and outside (O). At second, we distinguish three types of 
connections: only input arcs, only output arcs, input and output arcs. In such a way it may be 
introduced nine types of contact places presented in Fig. 2.3. Notice that, functional subnet 
uses places of type d) as input X  and places of type b) as output Y . 

 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

 I I  I O O O 

 I I  I O O O 
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g) 

 
h) 

 
i) 

 I I  I O O O 

 
Fig. 2.3. Types of contact places 

 
3 Properties of Functional Subnets 
 

Lemma 3.1. Subnet ,  is a functional subnet iff it holds true 
 

)(RB TR ⊆
RRR ⊆∪ •••• )()( .

Proof.  A) Sufficiency. Let’s )(RBZ =  be a functional subnet. We prove that 
from the contrary. Let’s  and consider place  such as . In all 
the cases: q  , ,  we obtain the contradiction. In the same way we may prove 

  

RR ⊆•• )(  
p•∈RtR ∉∧• )tt ∈∃ • (:

Qq∈

•∈ Rp t
X∈

( .
Yq∈

RR ⊆•• )
B) Necessity. Let’s •  holds true. If  and since Q  then 

. Otherwise if t  and since Q  then t  
Consequently, in two above cases conditions of functional subnet , 

,  holds true. � 

RRR ⊆∪ ••• )()(
Q• ∪∈

∅=′∩• )\( TTY

•• ∪∈ XQt
∪Y

RX •⊂∪
R∈ •• )
′∩• )\( TT

TRt ⊂∈ •• )(

′∩• )\( TTX

Y• •⊂ R T⊂( .
∅=•Q

∅=
Remark. If we would not consider functional subnets consisting of an isolated transition 

we might write the condition of Lemma 3.1 as:  RRR =∪ •••• )()( .
 
Theorem 3.1. Sets of transitions of two arbitrary minimal functional subnets Z ′  and Z ′′  

of Petri net N do not intersect. 
Proof. Let  and )(TBZ ′=′ )(TBZ ′′=′′  be minimal functional subnets. We assume the 

contrary, namely T  and consider the net induced by the set ∅≠′′∩′ T TT ′′∩′ . 
Using the monotony of the dot operation we construct the following sequence: 

TTT ′⊂′′∩′  
then 

•• ′⊂′′∩′ TTT )(  
thus, according to Lemma 3.1 

TTTT ′⊂′⊂′′∩′ •••• )())(( . 
In analogous way we may obtain 

TTTT ′′⊂′⊂′′∩′ •••• )())((  
then  

TTTT ′′∩′⊂′′∩′ •• ))(( . 
Notice that also the following condition holds true 

TTTT ′′∩′⊂′′∩′ •• ))(( . 
Therefore we have 

TTTTTT ′′∩′⊂′′∩′∪′′∩′ •••• ))(())(( . 
That is why ,  is a functional subnet of Petri net , which contradict with 
minimality of subnets  and 

)( TTB ′′∩′
Z ′

N
)(TB ′= )(TBZ ′′=′′  . � 

Corollary 1. Sets of internal places of two arbitrary minimal functional subnets Z ′  and 
Z ′′  of Petri net N do not intersect. 
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Corollary 2. Set of minimal functional nets ℑ , defines a partition of set T 
into no intersected subsets 

}{ jZ= NZ j f
jT  such as T , T , j

j
TU= ∅= jkj TI k≠ . 

 
To represent the interconnection of minimal functional subnets we construct the high 

level net of minimal functional subnets. Transitions of this net correspond to minimal 
functional subnets. Set of places consists of contact places of decomposed net. High level net 
of Petri net  is presented in Fig. 3.1. Let us implement the formal definition of these nets. 1N

 
 

4p
3p2p

1p

1Z  

2Z  

3Z  

5p

 
Fig. 3.1.  Net of minimal functional subnets of Petri net  zN1 1N

 
Definition 6. Net of functional subnets 
Net of functional subnets of a given Petri net  is Petri net N N ′  such that:  

CP =′ , T ,  },|{ NZZtt ZZ f↔=′

FtpZTtFtp Z ∈′∈∃⇔′∈′ ),(:)(),( , ( . FptZTtFpt Z ∈′∈∃⇔′∈′ ),(:)(),
 

Notice that the net of functional subnets may be defined for decomposition consisting of 
non-minimal functional subnets.  
 
Definition 7. Completeness 
Subnet  of Petri net N is the complete in N iff the following 
conditions: , • , •  are held in N. 

),,,()( RYQXRBZ ==
RX ⊆• RY ⊆ Q R⊆•

 
Lemma 3.2. Subnet Z is the complete in Petri net N iff it is a functional subnet of N. 
Proof. We start with proof of necessity of the completeness. So, let Z be a functional 

subnet of N: . Then conditions of completeness are held for adjacent transitions of 
places Q according to definition of internal places, while for output transitions of input places 
and input transitions of output places according to constrains on arcs in definition of 
functional subnet. 

NZ f
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Let us prove the sufficiency. It is known that Z is subnet of N generated by the set of 
transitions R and Z is a functional net. It is remained to prove that constrains on arcs 
connecting places of subnet Z with residuary part of net are held. We denote residuary part of 
net as ),,,()( RXQYRBNZ ′′=−=′ , where Q )(\ YQXP UU=′ , RTR \=′ . We assume a 
contrary. Let N contains one or few no legal arcs of possible six types:  a) ( ; b) ; c) ),rx ′ ),( yr′



 

),( qr ′
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; d) ( ; e) ; f) ), rq′ ),( rq ′ ),( qr′ , where RrRrQqQqYyXx ′∈′∈′∈′∈∈∈ ,,,,, .

RX ⊄•

R⊄

RQ ⊄•

R⊄•

ZZ

 We 
shall consider each of types mentioned separately: 

Frx ∈′),
Fyr ∈′ ),
Fq ∈′),
Frq ∈′ ),
Frq ∈′),
Fq ∈′ ),

∈′r
r •∈′
q ∈′
q ∈′

∈′r
r •∈′

Cp∈
p∈

′′′,

N

Z

)p•∈′′, pt •∈′′

tt ′′′,

( t′∃ Zt ∈′′∃

′′′,
),( •∈′′′′∈′′∃ ptZt

,( Eℑ=

,′∈ tZ

}k

(

zN

,j pY∈|)k pZ ∃{(E = {w

a) If ( , then , consequently . •x
b) If  then , consequently . ( , y Y•

c) If ( , then . r Y
d) If  then . ( , X
e) If ( , then , consequently • . •q
f) If  then , consequently . r( , q Q•

Therefore, in each of enumerated cases we obtain contradiction. This fact finishes the proof of 
sufficiency for subnet completeness. � 

Lemma 3.3. Each contact place of the decomposed Petri net has no more than one input 
minimal functional subnet and no more than one output minimal functional subnet. 

Proof. Suppose the contrary. We have to consider two cases: 

a) a contact place  that has more than one input minimal functional subnet exists; 
b) a contact place  that has more than one output minimal functional subnet 

exists. 
C

In case a) there are minimal functional subnets such as  
,() tZ ′′∧∈ . 

As according to Lemma 3.2 each minimal functional subnet is complete in  so 
transitions  according to the definition of completeness belongs to the same minimal 
functional subnet. Thus we obtain a contrary. 

In case b) there are minimal functional subnets Z such as  
)• ∧∈′′∃ pt . 

And we obtain a contrary in such a manner as in the case a). 
The contrary obtained in the both cases proves the lemma. � 

The immediate conclusion of Lemma 3.3 and a marked graph definition [Diaz 01, Murata 
89, Peterson 81] is the following theorem. 

Theorem 3.2. The net of minimal functional subnets of a given Petri net is a marked 
graph. 

Described above net  is detailed enough representation of subnets’ interconnections. It 
contains parallel paths in the case a few contact places connect a pair of subnets. For more 
brief representation we may hide contact places considering only interconnections of subnets. 
In this case we obtain a following graph. 
 
Definition 8. Graph of functional subnet 
Graph of functional subnets of a given Petri net N is a directed weighted graph G , 
where set of nodes ℑ  is formed with minimal functional subnets of net N and arcs E connect 
nodes in the case corresponding subnets have common contact places in such a manner that: 

, 

),W

: p,j XZ ∈ }FrqF ∈),(,( .qtTrTtqZZ kjkj ∈∈∃∈∃= ),(:,),  

 
Graph allows the scheme representation of functional subnets’ interconnections for source 

net. At Fig. 3.2 a) graph of functional subnets of Petri net  is presented. 1N
 



2 

2

2Z  

3Z  

1Z  

 
a) directed 

2

2

2Z

3Z  

1Z

 
b) undirected 

 
Fig. 3.2. Graph  of functional subnets of Petri net  1G 1N

 
Furthermore we will use also undirected graph of decompositions (Fig. 3.2 b) adding 

weights of arcs with contrary directions. 
It should to be noted that minimality in general case does not mean a presence of a little 

quantity of places and transitions but only assumes that subnet may not be divided further in 
(internal) functional subnets. Moreover, non partitionable net may consist of an arbitrary 
number of nodes. An example of non partitionable net is presented at Fig. 3.3. Chain of places 
and transitions connected with arcs of pointed type may contain no limited number of nodes. 

 
 

  
Fig. 3.3. Non partitionable net  2N

 
Theorem 3.3. Any subnet of an arbitrary Petri net N is a sum (union) of a finite number of 

minimal functional subnets. 
Proof. Let us assume the contrary and exactly that exists functional subnet Z ′ of Petri net 

N that is not a union of minimal subnets. As ℑ  defines partition of set T, so T ′  contains parts 
of subsets jT . Formally it may be represented as: 
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iR
Ii

T
∈

=′ U , where I is a set of subnets’ numbers transitions of which contains in T ′ ,  

and, moreover, there exists at least one set 

ii TR ⊆

jj TR ⊂  for any Ij∈ . Let us consider set of 
transitions  and show that it generates functional subnet  of Petri net N. As jj RTS \= )(SB
Z ′  is functional subnet of N, so  is connected with nodes of subnet )(SB Z ′  only by means of 
contact places and, moreover, since jZ  is functional subnet of N, so  is connected with 
nodes of subnet  also only by means of contact places. Besides, for input and output 
places  are held all the constraints of functional subnet. Therefore, functional subnet 

)(SB
jZN −

)(SB jZ  
contains functional subnet  that contradicts with minimality of )S(B jZ . Contradiction 
obtained proves the false of source assumption about that ∅≠S . Thus, T ′  contains set jT  
entirely that according to arbitrary choice of jT  proves the theorem. � 



 
 

4p5p

3t2t5t
3p2p

1t

1p

21 ZZ +

 
Fig 3.4. Functional subnet 21 ZZ +  of Petri net  1N

 
The above theorem may be illustrated with Fig. 3.4 showing a net that is the sum of two 

minimal functional subnets of Petri net  presented in Fig. 2.2. 1N
Corollary. The partition of set T defined by the set of minimal functional subnets is the 

generating family for the set of functional subnets of Petri net N. 
 

 
4 Technique of Decomposition into Functional Subnets 

 
4.1 Decomposition via Logical Equations 

 
A functional subnet  of a Petri net ),,,( 03020 TPPPZ = ),,( FTPN =  will be considered. 

Let , according to Proposition 2.2, be a functional subnet . 
Interconnection of pointed subnets is illustrated in Fig. 4.1. Let us construct equations in 
predicate calculus of the first order defining what subset the place or transition belongs to. It 
will be used definition of functional subnet and also that according to Proposition 2.2 net 

0ZN − ),,,( 12131 TPPP=

1

Z

Z  
is also functional subnet of N. We have for transitions: 

 







∈∨∈∈∀∧∈∨∈∈∀≡∈

∈∨∈∈∀∧∈∨∈∈∀≡∈
••

••

))())((())())((()(
))())((())())((()(

21311

30200

PpPptpPpPptpTt
PpPptpPpPptpTt

 
(4.1) 

 

 
In the same way it may be constructed equations defining the set the places belong to: 
 













∈∈∀∧∈∈∀≡∈

∈∈∀∧∈∈∀≡∈

∈∈∀∧∈∈∀≡∈

∈∈∀∧∈∈∀≡∈

••

••

••

••

))(())(()(
))(())(()(
))(())(()(
))(())(()(

103

012

111

000

TtptTtptPp
TtptTtptPp
TtptTtptPp
TtptTtptPp

 

(4.2)

 

  
 

11



 
00 ,TP

3P2P

11,TP

 
Fig. 4.1. Interconnection of functional subnets 

 
We substitute equations (4.2) into (4.1) and note, that as T , and also 

, so it is sufficient to consider only one of equations (4.1), for example, defining 
what transitions belong to subset 

TT =10 U

∅=10 TT I
1T . We obtain the following system: 

 

))))(())((()))(())()((((
))))(())((()))(())()((((

)(

0111

1011

1

TtpsTspsTspsTspstp
TtpsTspsTspsTspstp

Tt

∈∈∀∧∈∈∀∨∈∈∀∧∈∈∀∈∀

∧∈∈∀∧∈∈∀∨∈∈∀∧∈∈∀∈∀

≡∈

•••••

•••••

 

(4.3) 

 
Using the finiteness of places’ and transitions’ sets, we replace the quantifiers of generality 
with conjunction on corresponding subsets of elements. Besides, we introduce indicators tτ  
of the belonging of transition to subsets in such a way that . Note that j

t Ttj ∈⇔=τ
}1,0{∈tτ ; so, these values may by used in logical equations. And, as T , so 

, and also . Therefore, equations (4.3) may be represented in 
Boolean algebra in the following form: 

∅=1T0 I

)1T(tt ∈⇔τ )( 0
_

Ttt ∈⇔τ

 

)&&&&(&)&&&&(& )()()()(
__

s

ps
s

ps
s

ps
s

pstp
s

ps

s

ps
s

ps
s

pstp
t τττττττττ

••••••••••
∈∈∈∈∈∈∈∈∈∈

∧∨∧∧∧∨∧≡
(4.4) 

 
Thus, we have proved the following theorem. 
Theorem 4.1. A partition of an arbitrary Petri net into functional subnets is completely 

defined with a system of logical equations (4.4). 
In the process of solution system (4.4) may be replaced with one equation that is the 

conjunction of equations corresponding to each transition of net. Methods of logical equations 
solution are well studied, for example, in [Glushkov 62]. 

Let us consider an example of net  (Fig. 2.1) decomposition. We construct the system of 
logical equations of form (4.4): 

1N
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














∨∨≡
∨∨≡

∨∨≡
∨∨≡

∨∨∨≡
∨∨∨≡

))((
))((

))((
))((

))()((
))()((

6416416256256

6256252512515

64164143434

43433213213

6256253213212512512

3213212512511461461

τττττττττττττ
τττττττττττττ

τττττττττττ
τττττττττττ

τττττττττττττττττττ
τττττττττττττττττττ

 

 
Let us construct the conjunction of equations, simplify it and bring to the disjunction 

perfect normal form. We obtain: 
 

654321654321654321654321

654321654321654321654321

ττττττττττττττττττττττττ
ττττττττττττττττττττττττ

∨∨∨
∨∨∨∨v

 

 
Note that first of terms corresponds to empty subnet, next three terms correspond to 

minimal subnets represented in Fig. 2.2: T , , . Residuary 
terms describe the sums of minimal subnets. So, for instance, sixth term describes subnet 
represented in Fig. 2.6. 

}{ 1
1 t= },,{ 532

2 tttT = },{ 64
3 ttT =

It should to note that algorithmic complexity of an arbitrary Petri net decomposition in 
functional subnets with logical equations described is in general case asymptotically 
exponential that concerned with estimations of logical equations’ solution complexity 
[Glushkov 62]. But this technique is universal and may be applied also for decomposition of 
Petri net into other kinds of subnets with contact places mentioned in Section 2 (Fig. 2.3). 
 
 

4.2 Decomposition with an ad-hoc algorithm 
 

Let us consider the following algorithm. 
 
Algorithm 4.1: 
Step 0. Choose an arbitrary transition Tt ∈ of net N and include it into the set of chosen 

transitions . }{: tR =
Step 1. Construct subnet Z that is induced by set R: ),,,()( RYQXRBZ == . 
Step 2. If Z is the complete in N, then Z is subnet sought, stop. 
Step 3. Create the set of absorbing transitions:  

}|{ RtQtRtYtRtXttS ∉∧∈∨∉∧∈∨∉∧∈= •••• . 
Step 4. Assign  and go to Step 1. SRR U=:
 
Theorem 4.2. Subnet Z constructed by Algorithm 4.1 is minimal functional subnet of Petri 

net N. 
Proof. According to Lemma 3.2 Algorithm 4.1 creates a functional subnet. It should to 

prove its minimality. We assume the contrary: let Z is not a minimal. Then, minimal 
functional subnet Z ′  of Petri net N exists such that )(TBZ ′′=′  and TT ′⊂′′ . So, subnet Z 
contains Z ′

t
. Let us consider two possible variants of Algorithm 4.1 execution: a) start with 

transition , such that t ; b) start with transition tT ′∈ T ′′∈ T ′∈ , such that . We shall 
consider each of two variants mentioned separately. 

T ′′t∉

a) Let t . We consider the first transition v of the set TT ′′∈ T ′′′ \ , which was included into 
set S on any pass of Algorithm’s 4.1 main loop. Thus, according to description of Step 3, one 
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of three cases:  or v , or v  is possible. In the first case a place , such 
as  may not be neither input, nor output, nor internal place of net 

•∈ Xv Y•∈ ••∈ S Xx∈
•∈ xv Z ′ . Contradiction has 

been obtained. In the same way we come to contrary in second and third cases. 
∉

• v∈v Y v X
•∈ x Z ′

1:= Z i Z
: += ii

),,W

Z,...,

(=
FT ,, →F: Ν

m nT =
+A

,1= nj ,1=
∈)j

m,1=
∈)i

.−

0Ν
M

b) Let t . We consider the first transition v of the set T ′′ T ′′ , which was included into set S 
on any pass of Algorithm’s 1 main loop. Thus, according to description of Step 3, is possible 
one of three cases: or , or . In the first case a place , such as X •∈ ••∈ S x∈
v  may not be neither input, nor output, nor internal place of net . Contradiction has 
been obtained. In the same way we come to contrary in second and third cases. � 

 
Thus, Algorithm 4.1 allows the construction of minimal functional subnet Z of Petri net N. 

Let us assign i  и . Than we assign =: ZNN −=: and repeat execution of Algorithm 
1 in the case the set T is not empty. Continuing in such a manner and assigning  we 
shall have constructed the set of minimal functional subnets  of net N which 
represent the sought partition of source net.  

1
kZZ , 21

Implementation of algorithm over net represented in Fig. 2.1 gives us the result coinciding 
with one obtained in the previous section on the base of logical equations and represented in 
Fig. 2.2. 

Since each arc is processed by algorithm only once, the following theorem is valid. 
Theorem 4.3. The complexity of Algorithm 4.1 is linear with respect to size of the net. 
Described algorithm of decomposition has been implemented in command line tool 

Deborah (www.geocities.com/zsoftua/softe.htm), which was developed as plug-in for Tina 
system [Berthomieu 04] (www.laas.fr/tina). 

 
 
5 Compositional Analyses of Petri Nets 
 

Further we consider Petri nets with multiply arcs [Murata 89] ,, FTPN  where 
 are as in Definition 1 and P ΝW defines the multiplicity of arcs,  is a set of 

natural numbers.  
Let us P = ,  and the sets of places and transitions are enumerated. We introduce 

matrices ,  of input and output arcs of transitions correspondingly: −A

jiaA ,
−− = , mi , ;  





=−

,,0
,,(),,(

,
otherwise

Ftptpw
a iji

ji

jiaA ,
++ = , i , nj ,1= ;  





=+

.,0
,,(),,(

,
otherwise

Fptptw
a jij

ji

And finally we introduce incidence matrix A  of Petri net as  + −= AAA
Marking of net is a mapping 0: Ν→Pµ , defining a distribution of dynamic elements 

named tokens over places;  is a set of nonnegative integer numbers. Marked Petri net is a 
couple ),( 0µN=  or a quintuple ),, 0,,( µWFTPM = , where 0µ  is initial marking. Further 
we present markings as vectors. 
 

 
5.1 Linear Invariants’ Calculation  
 

P-invariant of Petri net is an integer nonnegative solution x  (vector-row) of the system 
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 0=⋅ Ax . (5.1)

 
T-invariant of Petri net is an integer nonnegative solution y  (vector-column) of the system 

0=⋅ yA . 
Petri net is p- or t-invariant, if it has a corresponding invariant with all positive 

components. 
So, according to [Murata 89], each t-invariant of Petri net is p-invariant of dual net, we 

shall consider further p-invariants only. Notice that dual net has transposed incidence matrix. 
In other words places of dual net correspond to transitions of source net and vice versa. 
Examples of Petri net and dual net are presented in Fig. 5.1, 5.2. 

 
p1

t1

p2 p3

t2 t3

t5

p5

t6

p4

t4

3
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2

6

6

 
 

t1

p6 p4

p1

t2 t3

p2 p3 t4

p5

t5

3

3

2

6

6

 

Fig. 5.1. Petri net  2N Fig. 5.2. Dual Petri net 2
~N  

 
Let us consider the structure of the system of equations (5.1). Every equation iL : 

0=⋅ iAx , where iA  denotes i-th column of matrix A , corresponds to the transition it . It 
contains terms for all the incident places. Coefficients are the weights of arcs. The terms for 
input places have the sign minus and the terms for output places have the sign plus. So, the 
system (5.1) may be represented as 

 
 nLLLL ∧∧∧= ...21 . (5.2)

 
Theorem 5.1. An arbitrary invariant x′of Petri net N  is the invariant of every functional 

subnet Z ′ , . NZ f′
Proof. So x′  is the invariant of Petri net , then N x′  is a nonnegative integer solution of 

(5.2) and consequently x′  is nonnegative integer solution of each . Therefore, iL x′  is the 
solution of an arbitrary subset of the set { . }iL

A functional subnet Z ′ ,  is generated by the set of its transition NZ f′ T ′ . Thus the 
equation corresponding to transition has the same form  as for entire net since subnet 
contains all incident places of source net. Therefore, the system for invariant of a functional 
subnet 

iL

Z ′ ,  is subset of the set {  and vector NZ f′ }iL x ′  is its solution. Consequently, x′  is 
the invariant of functional subnet Z ′ . Arbitrary choice of NZ f′  in the above reasoning 
proves the theorem. � 

Corollary. If a Petri net is invariant, then all its functional subnets are invariant too. 
 
Theorem 5.2. Petri net  is invariant iff all its minimal functional subnets N jZ , 

are invariant and there is a common nonzero invariant of contact places. NZ j f
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Proof. We shall use only equivalent transformations to not prove separately necessary and 
sufficient conditions. According to Theorem 3.1, the set of minimal functional subnets 

,  of an arbitrary Petri net N defines the partition of the set T into 
nonintersecting subsets 

}{ jZ=ℑ NZ j f
jT . Let us the number of minimal functional subnets is k . As it was 

mentioned in the proof of Theorem 5.1, equations contain terms for all incident places. So we 
have 

kLLLL ∧∧∧⇔ ...21 , 
where  is the subsystem for minimal functional subnet jL jZ , . Notice that if  has 
no solution, then  has no solution too (except trivial, of course). 

NZ j f jL
L

Let us jR  is the matrix of basis solutions of subsystem . Then we write the general 
solution of the subsystem  in the form  

jL
jL

 jj Gzx ⋅= , (5.3)
where jz is an arbitrary nonnegative integer vector. Thus 

kk GzGzGzxL ⋅==⋅=⋅=⇔ ...2211 . 
So the system 

 kk GzGzGzx ⋅==⋅=⋅= ...2211 (5.4)
is equivalent to the source system (5.1). Further we shall demonstrate, that solution of above 
system (5.4) involves enough little number of equations. Let us consider a set of places of 
Petri net  with the set of minimal functional subnets { : N }| NZZ jj f

CQQQP k UUUU ...21= , 
where is the set of internal places of subnet jQ jZ  and C  is the set of contact places. 
According to definition, any place  is incident only to transitions from the set jQp∈ jT . So, 

 corresponding to this place will appear only in the one subsystem . That is why we 
have to solve only equations for contact places from the set C . 

px jL

• Now we shall construct equation for the contact place Cp∈ so it is incident more than 
one subnet. According to Lemma 3.3, each contact place Cp∈  is incident not more than 
two functional subnets. So we have equations 

 j
p

ji
p

i GzGz ⋅=⋅ , (5.5)

where ji,  is a numbers of minimal functional subnets incident to contact place ,  is 

a column of matrix  corresponding to the place 

Cp∈ j
pR

jR p . Equation (5.5) may be transformed to 
the form 

0=⋅−⋅ j
p

ji
p

i GzGz . 
So the system 

 







∈=⋅−⋅
∈∨∈⋅=
CpGzGz

CpQpGzx
j
p

ji
p

i

jj
p

j
p

,0
,

 
(5.6)

is equivalent to the source system (5.1). This fact proves the theorem. � 
Conclusion 1. To calculate Petri net invariants we may to calculate invariants of its 

minimal functional subnets and then to find common invariants of contact places.  
Notice that in both mentioned cases according to (5.6) we have to solve a linear 

homogeneous system of equation in nonnegative integer numbers.  
Conclusion 2. The above theorem 5.2 is valid for an arbitrary set of functional subnets that 

defines a partition of the set of the transitions of source Petri net. 
 
Therefore, a compositional method for Petri net invariants calculation may be presented as:  
• Stage 1. Decompose Petri net into functional subnets.  
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• Stage 2. Calculate invariants for each of functional subnets – find general solutions 
(5.3).  

• Stage 3. Compose subnets – find the common solution for the set of contact places 
(5.5).  

Note that stages 2, 3 consist in solution of systems of linear homogeneous Diophantine 
equations in nonnegative integer numbers. It ought to find common solution of a system in the 
form of linear combination of basis solutions. For these purposes may be applied methods 
described in [Colom 90, Contejean 97, Toudic 82]. 

Let us extract out of system (5.6) equations for contact places  
0=⋅−⋅ l

i
lj

i
j GzGz . 

Or in the matrix form  

0=
−

⋅ l
i

j
ilj

G
G

zz . 

Let us enumerate all the variables jz  in such a way to obtain united vector  
kzzzz ...21=  

and assemble matrices ,   in united matrix j
iG l

iG− K . Then we obtain system  
 0=⋅Kz . 

System obtained has the form (5.1), consequently, its general solution has the form (5.3):  
 Rvz ⋅= . (5.7)

Let us construct united matrix G  of solutions (5.3) of systems   for all functional subnets 
in such a manner that  

jL

 Gzx ⋅= . (5.8)
We substitute (5.7) in (5.8): 

GRvx ⋅⋅= . 
Thus  

 Hvx ⋅= , GRH ⋅= . (5.9)
Since only equivalent transformations were involved, the reasoning represented above 

proves the following theorem. 
Theorem 5.3. Expressions (5.9) represent the general solution for invariant (5.1).  

 
Now we estimate the total speed-up of computations under obtaining of invariants with 

decomposition. Let r  be a maximal number either contact places or places of subnets 

( )

= j

j
PCr max,max 


 . Note that nr ≤ . Then complexity of invariants calculation with 

decomposition may be estimated as r2~ , so the complexity of decomposition according 
theorem 4.6 is linear. 

Thus, speed-up of computations is estimated as 
 rn

r
n −= 2

2
2 . (5.10)

Therefore, obtained speed-up of computations is exponential with respect to dimension of net. 
 
Now we apply introduced technique to the calculation of invariants of Petri net  (Fig. 

5.1). Notice that, this net is a weighted variant of the net  (Fig. 2.1). 
2N

1N
I. As it was represented in Fig. 2.2, Petri net  is decomposed into three minimal 

functional subnets  completely defined by the sets of its transitions T , 
, . 

1N
321 ,, ZZZ

},, 53 tt
},{ 64

1 tt=

}{ 1
2 tT = { 2

3 tT =
II. Let us calculate invariants of the minimal functional subnets. 
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Subnet 1Z . The system of equations is 





=+⋅−
=+⋅−

.02
,06

14

15

xx
xx

 

The general solution is 
( ).130061

1 ⋅= zx  
Subnet 2Z . The system of equations is 

{ .03 321 =+⋅+− xxx  
The general solution is 









⋅=

00101
00013

),( 2
2

2
1 zzx . 

Subnet 3Z . The system of equations is 









=+−
=+−

=⋅+−⋅−

.0
,0

,063

52

43

532

xx
xx

xxx
 

The general solution is 
( )133103

1 ⋅= zx . 
III. Let us write the system of equations for the contact places. Notice that in net  all 

places are contact ones 
1N














⋅=⋅=
⋅=⋅=
⋅=⋅=
⋅=⋅=

⋅=⋅+⋅=

.11
,33
,31
,11

,613

1
1

2
15

1
1

3
14

3
1

2
23

3
1

2
12

1
1

2
2

2
11

zzx
zzx
zzx
zzx

zzzx

 

We may write this system in the form (5.1) and solve it with Toudic method [Toudic 82] 














=⋅−⋅
=⋅−⋅
=⋅−⋅
=⋅−⋅

=⋅−⋅+⋅

.011
,033
,031
,011

,0613

1
1

3
1

1
1

3
1

3
1

2
2

3
1

2
1

1
1

2
2

2
1

zz
zz
zz
zz

zzz

 

The general solution with the respect to the vector ),,,( 3
1

2
2

2
1

1
1 zzzzz =  is 

( )1311⋅= rz . 
And the general solution of source system is 

( )13316⋅= rx . 
Notice that in this example we have not obtained any speed-up of computations, so Petri 

net is tiny and all its places are contact ones. Real-life examples are considered in Section 7.  
 

 
5.2 Fundamental Equation Solution  

 
A fundamental equation of Petri net [Murata 89] may be represented as follows 

 
 µ∆=⋅ Ax , (5.11)
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where 0µµµ −=∆ , x  is a firing count vector, A  is a transposed incidence matrix or 
incidence matrix of dual Petri net [Murata 89]. Notice that each equation of this system 
corresponds to a transition of dual Petri net. 

According to [Schrejver 91, Kryviy 99] we represent a general solution of homogeneous 
system as the linear combination of basis solutions with nonnegative integer coefficients. 
Notice that a basis consists of minimal in integer nonnegative lattice solutions of system. As 
distinct from classic theory of linear systems for representation of general nonnegative integer 
solution of nonhomogeneous system it is necessary to involve not one arbitrary but a set of 
minimal particular solutions. 

Let us consider the structure of system (5.11): 
µ∆=⋅ Ax . 

We apply the technique described in the previous subsection 5.1 to nonhomogeneous systems. 
Each equation : iL i

iAx µ∆=⋅ , where  denotes i-th column of matrix iA A , corresponds to 
transition  (of dual net). Equation contains the terms for all the incident places. At that the 
coefficients are equals to weights of arcs and the terms for input places have sign minus and 
for output places – plus.  

it

Therefore the system (5.11) may be represented as 
 nLLLL ∧∧∧= ...21  (5.12)

Theorem 5.4. Solution x ′  of fundamental equation for Petri net  is the solution of 
fundamental equation for each of its functional subnets. 

N

Proof. As x′  is the solution of fundamental equation for Petri net , so N x′  is a 
nonnegative integer solution of system (2) and consequently x′  is a nonnegative integer 
solution for each of equations . Thus iL x ′  is a solution for an arbitrary subset { . }iL

According to Definition 4, a functional subnet Z ′ , NZ f′  is generated by the set of its 
own transitions T ′ . Thus, an equation corresponding to a transition of subnet has the same 
form  as for the entire net, so subnet contains all the incident places of source net. iL

Therefore the system representing the fundamental equation for functional subnet Z ′ , 
 is a subset of set {  and vector NZ f′ }iL x ′  is its solution. Consequently x ′  is the solution of 

fundamental equation for functional subnet Z ′ . Arbitrary choice of subnet  in above 
reasoning proves the theorem. � 

NZ f′

Theorem 5.5. Fundamental equation of Petri net is solvable if and only if it is solvable for 
each minimal functional subnet and a common solution for contact places exists.  

Proof. We shall use equivalent transformations of systems of equations to not prove 
separately necessary and sufficient conditions. According to Theorem 4.4, a set of minimal 
functional subnets ,  of an arbitrary Petri net  defines a partition of set }{ jZ=ℑ NZ j f N T  
into nonintersecting subsets jT . Let number of minimal functional subnets equals . As it 
was mentioned in the proof of Theorem 5.3, equations contain the terms for all the incident 
places. Therefore,  

k

 kLLLL ∧∧∧⇔ ...21 , (5.13)

where  is a subsystem for a minimal functional subnet jL jZ , . Notice that if  has 
not solutions, than  has not solutions also.  

NZ j f jL
L

Let us a general solution for each functional subnet has the form  
 jjjj Gzxx ⋅+′= , (5.14)

where jj Gz ⋅  is the general solution of homogeneous system, jj Xx ′∈′ , where jX ′  is the 
set of minimal particular solutions of nonhomogeneous system of equations. According to 
(5.13): 

kkk GzxGzxGzxxL ⋅+′==⋅+′=⋅+′=⇔ ...222111 . 
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Therefore system  
 kkk GzxGzxGzxx ⋅+′==⋅+′=⋅+′= ...222111  (5.15)
is equivalent to source system of equations (5.11). We shall demonstrate further that the 
solution of system (5.15) requires essentially smaller quantity of equations. Let us consider a 
set of places of Petri net  with the set of minimal functional subnets { : N }| NZZ jj f

CQQQP k UUUU ...21= , 
where Q  is a set of internal places of subnet j jZ  and C  is a set of contact places. According 
to definition each internal place  is incident only to transitions from set jQp∈ jT . Thus  

corresponding to this place is contained only in system . Consequently, we have to solve 
only equations for contact places from set C . 

px
jL

Now we construct equations for contact places of net Cp∈ , so only they are incident 
more than one subnet. According to Lemma 3.3, each contact place  is incident not 
more than two functional subnets. Therefore, we have equations  

Cp∈

 l
p

ll
p

j
p

jj
p GzxGzx ⋅+′=⋅+′ , (5.16)

where  is the numbers of minimal functional subnets incident to contact place  and 
 is a column of matrix  corresponding to place 

lj, Cp∈
j
pG jG p . Equation (5.16) may be represented 

in form  
j

p
l

p
l
p

lj
p

j xxGzGz ′−′=⋅−⋅ . 
Thus, system  

 







∈′−′=⋅−⋅
∈∨∈⋅+′=

CpxxGzGz
CpQpGzxx

j
p

l
p

l
p

lj
p

j

jj
p

jj
pp

,
,,

 
(5.17)

is equivalent to source system (5.11). This fact completes the proof of theorem. � 
Notice that in both cases described in proof according to (5.17), we have to solve a linear 

homogeneous system of equations.  
Corollary 1. To solve the fundamental equation of Petri net we may solve the fundamental 

equations of its minimal functional subnets and then to find a common solutions for contact 
places.  

Corollary 2. Theorem 5.5 is valid also for an arbitrary set of functional subnets defining a 
partition of the set of transition of Petri net.  

 
Therefore, a compositional method for solution of fundamental equation of Petri net may 

be presented as: 
• Stage 0. Construct a dual Petri net. 
• Stage 1. Decompose dual Petri net into functional subnets.  
• Stage 2. Calculate solutions for each of functional subnets – find general solutions of 

nonhomogeneous systems of equations (5.14).  
• Stage 3. Compose subnets – find the common solution (5.16) for the set of contact 

places.  
Note that stages 2, 3 consist in solution of systems of linear nonhomogeneous Diophantine 

equations in nonnegative integer numbers. For this purpose the methods described in [Colom 
90, Contejean 97, Kryviy 99, Toudic 82] may be applied. 

Let us extract out of system (5.17) equations for contact places  
jll

i
lj

i
j xxGzGz ′−′=⋅−⋅ . 

Or in the matrix form  
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il
i

j
ilj b

G
G

zz ′=
−

⋅ , jl
i xxb ′−′=′  

Let us enumerate all the variables jz  in such a way to obtain a united vector  
kzzzz ...21=  

and to assemble the matrices G ,   in a united matrix j
i

l
iG− K . Then we obtain system  

 bKz ′=⋅ . 
System obtained has the form (5.11), consequently, its general solution has the form (5.14):  

 Rvzz ⋅+′= . (5.18)
Let us construct a united matrix G  of solutions (5.14) of system (5.11) for all the functional 
subnets in such a manner that  

 Gzxx ⋅+′= . (5.19)
We substitute (5.18) in (5.19): 

( ) GRvGzxGRvzxx ⋅⋅+⋅′+′=⋅⋅+′+′= . 
Thus  

 Hvxx ⋅+′′= , Gzxx ⋅′+′=′′ , GRH ⋅= . (5.20)
Since only equivalent transformations were involved, the reasoning represented above 

proves the following theorem. 
Theorem 5.6. Expressions (5.20) represent a general solution of fundamental equation 

(5.11).  
 
Now we estimate the total speed-up of calculations under the obtaining of invariants via 

decomposition. Let r  be a maximal number either contact places or places of subnets 

( )

= j

j
PCr max,max 


 . Notice that nr ≤ . Then the complexity of fundamental equation 

solution for subnet may be estimated as r2~ , since the complexity of decomposition 
according to Theorem 4.3 is polynomial. 

Thus, the speed-up of computations is estimated as 
 rn

r
n −= 22

2 . (5.21)

Therefore, speed-up of computations obtained is exponential.  
Notice that the exponential speed-up of computations represented with expression (5.21) is 

valid also in the case the general solutions for the functional subnets have more than one 
minimal particular solution. Really, let each of minimal functional subnets has not more than 

 minimal solutions. Then during calculation of common solutions for contact places we 
ought to solve  systems and polynomial multiplier may be omitted in the comparison 
estimations of exponential functions.  

n
2n

 
Let us check the reachability of marking )4,0,1,2,0(=µ  in Petri net  (Fig. 5.1). Thus 2N

)4,1,1,2,1( −−=∆µ .  
Stages 0,1. Dual Petri net 2

~N

}{ 4t

 (Fig. 5.2) is decomposed into four minimal functional 

subnets  completely defined by the subsets of its transitions: T , 

, T , T . 

4321 ,,, ZZZZ

}, 3t }{ 5
3 t=

}{ 1
1 t=

{ 2
2 tT = 4 =
Stage 2. 

1Z : { ;1641 −=++− xxx  







⋅+=
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001001

),()000001( 1
2

1
1 uux . 
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2Z : 



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xxx
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1 ⋅+= ux . 
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1
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1
1
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
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







⋅+=

161202
100011

),()041102( 21 vvx . 

Notice that the general solution of homogeneous equation constitutes t-invariant of Petri 
net. On the minimal solution )0,4,1,1,0,2(=′x  we may construct the friable sequence 

51435551 tttttttt=σ . Therefore, marking )4,0,1,2,0(=µ  is reachable in net . 1N
In this tiny example all the places are contact, so we have not obtained any speed-up of 

computations. For real-life examples the accelerations may become rather considerable 
[Zaitsev 04c, 04f, 05]. 

 
 
5.3 Analysis of Petri Net Properties  

 
We consider the role that linear invariants and fundamental equation solutions play for the 

analysis of Petri net properties. Then we show that a lot of tasks for Petri net properties 
analyses may be reduced to solution of linear Diophantine systems of equations and 
inequalities and solvable in the same compositional way. 

Invariants take a key part at investigation of such properties of nets as boundness, 
conservativeness, liveness [Diaz 01, Girault 03, Murata 89]. Net is invariant if it possesses an 
invariant with all the natural components. It is known that p-invariant net is conservative and 
bounded and these properties are structural i.e. they hold true at any initial marking. T-
invariant represents persistent sequences of transitions firing. Existence of such sequences is a 
necessary condition for liveness of bounded net. As according to [Murata 89] each t-invariant 
of Petri net is p-invariant of dual net, so further without loss of generality we shall consider 
only p-invariants.  

It is known [Diaz 01, Girault 03, Murata 89, Sleptsov 86] that the solvability of 
fundamental equation in nonnegative integer numbers is a necessary condition of the 
reachability of a given marking. Solutions of system (5.11) are used for the construction of 
the required firing sequences. 

Notice that a majority of known tasks of Petri nets analysis is reduced to solving a linear 
system of equations and inequalities [Murata 89, Sleptsov 86]. Necessary and sufficient 
conditions for basic structural properties of Petri nets are represented in Table 5.1.  

 
Table 5.1. Necessary and sufficient conditions for structural properties of Petri nets 
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Structural property Necessary and sufficient conditions 
Boundness 0,0 ≤⋅>∃ Axx  
Conservativeness 0,0 =⋅>∃ Axx  
Repetitiveness 0,0 ≥⋅>∃ yAy  
Persistance 0,0 =⋅>∃ yAy  

 
During the investigation of free choice Petri nets properties [Desel 1995, Murata 89] such 

structural elements as siphons and traps are applied widely. Nonempty subset of places  of 
net  is named a siphon if . Nonempty subset of places  of net  is named a trap 
if . A free choice net is live if and only if each its siphon contains a marked trap. 
Characteristic vectors of siphons and traps may be obtained as {  solutions of the 
following systems of inequalities  

S
N

S •⊆

•• ⊆ SS Q N

}
S•

1,0

0≤⋅Ds  and 0≤′⋅Dq , 
where  and  are modified incidence matrices [Murata 89]. D D′

 
As shown in [Kryviy 99] a linear system of equations and inequalities may be reduced to 

equivalent system of equations. Note that transformations mentioned correspond to 
modification of source net in such a manner that the task of any property determination may 
be considered as calculation of p-invariant for modified net. Therefore, without loss of 
generality we solve homogeneous equation of the form (5.1) for determination of structural 
properties and nonhomogeneous equation of the form (5.11) for determination of behavioural 
properties of Petri nets.  

Notice that, for a given matrix C  of a linear system we may construct a matrix of 
directions  and consider it as the incidence matrix of a Petri net. This allows the 
solution of an arbitrary linear systems using described decomposition [Zaitsev 04h]. 

( )CsignD =

 
 
6 Sequential Compositions of Functional Subnets 

 
6.1 Collapse of Weighted Graph 

 
Sequential composition of Petri net out of its minimal functional subnets is aimed to 

provide an additional speed-up for calculation of invariants and solution of the fundamental 
equation. The main idea is concerned with the system of equations for contact places. If this 
system has dimension exceeding the maximal dimension of functional subnet then we propose 
to execute sequential composition of subnets solving a sequence of systems with lesser 
dimension. Since the complexity of system solution is exponential, we obtain an essential 
speed-up in that way. 

We consider the presentation of decomposition with undirected graph G  as it 
was described in Section 3 (Fig. 3.2 b). Let us consider the basic ways of composition of 
functional subnets: 

),,( WEV=

 
I. Simultaneous composition. 

II. Sequential composition: 
1) Pairwise (edge); 
2) Subgraphs. 
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Simultaneous composition assumes instant resolution of system for all contact places. It 
was considered in previous Section 5; speed-up of computations is estimated by (5.10). In 
general case the sequential composition requires the solution of system for a few neighbor 
functional subnets represented by connected subgraph of , which is replaced then by a 
single vertex (Fig. 6.1). Continuing in such a way we transform the source graph into a single 
vertex. This process was called a collapse of graph. 

G
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Fig. 6.1. Collapse of Subgraphs 
 
The simplest kind of sequential composition is a pairwise composition at which a pair of 

adjacent vertices is replaced by one new vertex as the result of the solution of system 
constructed for contact places used for connection of corresponding subnets (Fig. 6.2). The 
number of contact places is equal to multiplicity of corresponding edge. In essence this 
operation may be represented as a fusion of adjacent vertices of a graph. Pairwise 
composition (contracting) provides the smallest dimension of solving systems. Process of p-
invariants calculation via edge composition is described in the next subsection 6.2. 

A linear system containing  equations and  unknown variables is named by -
system. We assume that linear homogeneous system of form (5.1) is solving. In framework of 
Petri net place invariants, equations of system (5.1) correspond to transitions and unknowns – 
to places of Petri net. Such an assumption does not restrict the generality as it was shown 
[Zaitsev 04d] in the same way the decomposition might be applied for nonhomogeneous 
systems at state equation solution. As a general estimation of complexity one parameter 
equaling to the maximum among a number of equations and a number of unknowns is 
considered usually: l

n

), n

m ),( mn

max(m= . Note that known methods of linear diophantine systems’ 
solution in nonnegative integer numbers [Colom 90, Contejean 97, Kryviy 99, Martinez 82, 
Schrejver 91, Toudic 82] are exponential in time and in space. Thus, time complexity of 
system solution is about . l2

Let us consider the decomposition of Petri net into  minimal functional subnets. We 
consider the dimensions of systems used at compositional solution of source system. It is 
required to solve systems of dimensions , ,...,  for minimal 
functional subnets. Let us for each subnet 

k

(k ),( 11 mn ), 22 mn ),( kk mn
iZ  it have been obtained a matrix of basis solutions 

 containing b  solutions. Then we have to solve one extra system for contact places at 
simultaneous composition. Estimation of dimension of this system is , as equations 

of system corresponds to contact places and free variables of basis solutions for subnets are 
unknowns. Notice that , , where с  is the number of contact places in 

the obtained decomposition: 

iG i

),( ∑
i

ibс

nn
i

i =∑ сm
i

i +∑ m=

Сс = . 
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Fig. 6.2. Process of Edge Collapse 
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Let we execute the fusion of two adjacent vertices with numbers i  and  representing the 

systems of equations with complexities  and  correspondingly. Then the 
complexity of the system solving at pairwise composition equals to ( , where  

is the number of contact places in composition of subnets 

j

ib +

),( ii mn ),( jj mn

i

),, jji bс jiс .

Z  и jZ . 
Further it is convenient to consider one of the parameters describing the dimension of a 

system, for instance, the number of equations. Let us assume that the number of unknowns 
differs slightly. Moreover, the number of basis nonnegative solutions is unknown beforehand 
that makes a priory estimation difficult. It is known that basis of solutions under set of vectors 
with natural components and natural generators, as a rule is characteristic by a large scale. 
Whereas basis constructed for rational generators has essentially low dimension [Colom 90]. 

It is convenient to choose as a characteristic of system’s dimension a number of places. So 
we consider as a characteristic of dimension for a system of equations for a functional subnet 
the number of its places and as a characteristic of composition’s dimension – the number of 
contact places used in composition. Contact places in such a calculation are accounted twice 
for each of adjacent subnets iii CQm +=

i

, where Q  is a set of internal places and C  is a 

set of contact places of subnet 
i i

Z . From practical experiences we have observed that 
generally . Thus, we assume in the sequel that this inequality holds. ii mn ≤

We consider diophantine linear systems of equations solving in the set of nonnegative 
integer numbers. As it was early mentioned, the complexity of such systems’ solution is 
exponential.  In comparison estimations of exponential functions the polynomial multiplier 
may be omitted. Thus, the complexity of system solution by usual methods we shall consider 
equals to , and complexity of solution via simultaneous composition – equals to 2 , where 

. In other words, dimension of system is defined by maximal dimension 

among subsystems constructed for functional subnets and system constructed for contact 
places. Really, we have . Thus, speed-up of calculations at simultaneous 
composition equals to . At the condition  we have 

m2
,mi

r

)(max сr
i

=

)2(22 rrr Ok =+⋅
rm−2 1>k mr <  and, consequently 

. Simultaneous composition advisable to apply in the cases the total number of 
contact places does not exceed the number of places of maximal subnet  or in the 

cases of minor exceeding. 

12 >−rm

сmii
≥)(max

As the solution of system for each subnet is the necessary stage of compositional 
technique, so further constructions are aimed to decrease the complexity of solution of system 
for contact places. We consider sequential collapse of graph by the way of fusion (collapse) of 
subgraphs generated by a given subset of vertices. Not limiting the generality we consider 
connected subgraphs. As the width of collapse we consider the sum of weights of edges of 
subgraph at a step. For sequential collapse the width is equal to maximal width of all the 
steps. The task consists in construction such a sequence of fusions, which provides the 
minimal width of collapse. The width of collapse corresponds to the dimension of system and 
the complexity of the system solution via sequential composition is about 2 , where d  is the 
width of collapse. Since  is essentially lesser than 

d

d r , we obtain an additional speed-up. 
Further we shall consider an edge collapse as more effective way of composition under 

exponential complexity of systems’ solution. Note that, estimations obtained are asymptotic. 
In particular case at not great dimension of subnets when the concrete values of estimations of 
exponential complexity are comparable to polynomial multipliers the collapse of subgraphs 
often presents a lesser calculation complexity. 
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6.2 Case Study of Edge Collapse 
 
Let’s consider Petri net model of modified protocol ECMA presented in Fig. 6.1. 
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Fig. 6.3. Petri Net  – Model of Telecommunication Protocol 3N

 
Net  (Fig. 6.3) is decomposed into four minimal functional subnets presented in Fig. 6.4. 3N
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Fig. 6.4. Minimal Functional Subnets of Petri Net  3N

 
Obtained decomposition is presented in Fig. 6.5. 
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A) Simultaneous composition 
 

I. Base solutions for minimal functional subnets: 
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II. Common solution for contact places 
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III. Composition of subnets 
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B) Sequential edge composition (Fig. 6.6) 
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Fig. 6.6. Sequential composition of net  3N
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6.3 Properties of Edge Collapse 

 
We consider the graph of decomposition of a given Petri net into minimal functional 

subnets. Weight of an edge equals to the number of contact places connecting correspond pair 
of subnets. Let G  is a given weighted graph. Without loss of generality, we 
consider  as a connected graph, otherwise we may provide a collapse separately on the 
components. 

),,( WEV=
G

 
Definition 10. Operation of edge collapse 
We define the operation of edge collapse G  for an edge e\ Ee∈  in such a way. Let e 21vv= . 
Then ),,(\ WEVGeG ′′′=′= , where V vUvvV }),{\ 21(=′ , where  is a new vertex 
representing the fusion (collapse) of vertices : 

v

2,v1v
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Thus, at the fusion of vertices of an edge the edges incident with both vertices are fused. 
 

Proposition 6.1. Edge collapse preserves the connectivity of graph. 
 
Proposition 6.2. The following expression for the sum of edges’ weights is valid 

. )()()( ewGSGS +′=
 
According to terminology [Berge 01, Harary 71], graph with kV =  and lE =  we call 

-graph or -graph. Since at execution of edge collapse operation a pair of adjacent 
vertices is fused, the edge collapse of entire graph consists in sequential execution of 

),( lk k
)1( −k  

operations of edge collapse. 
  

Definition 11. Process of sequential edge collapse 
Process of sequential edge collapse of -graph (or briefly edge collapse) is a sequence of 

 operations of edge collapse: 
k

)1( −k
 

k
kk eGGeGGeGGGG \\\ 21

2
12

1
010 −− =→⋅⋅⋅→=→=→= . 

 
Note that, obtained as the result graph  consists of a single vertex. This perfectly 

corresponds to the name of process, which compress the source graph into a single vertex. 
The process of collapse may be represented by the sequence of fusing edges 

1−kG

121 ... −= keeeσ . 
As the major parameter of collapse we consider its width equalling to maximal weight of 
fusing edge.  

 
Definition 12. Width of edge collapse 
Width of edge collapse is the maximal weight of edge in the process of collapse: 

 

)(max)( ewd
e σ

σ
∈

= . 

 
As will readily be observed the choice of different sequences of edges e  in general 

case leads to various values of collapse width. We are interested in the sequences possessing 
the minimal width. 

kee ...21

 
Definition 13. Optimal collapse 
An optimal process of collapse (or briefly optimal collapse) denotes the sequence of edges, 
which provide the minimal width of collapse. The corresponding width of collapse is 
accordingly denoted by optimal width.  
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Optimal width of collapse is the property of a given graph. We introduce the recurrent 
definition for optimal width of collapse. Let us denote the optimal width of edge collapse of 
graph G  as . Then )(Gd

 





=
=

)),\(),(max(),(
),,(min)(

eGdeweGd
eGdGd

e  

 
where the function of two arguments  defines the optimal width of edge collapse of 
graph G  under the condition the collapse of edge e  will be executed firstly. 

),( eGd

 
Edge collapse constitutes the combinatory task for solution of which we may apply the 

universal method of complete choice of all the possible sequences of edges. The exact number 
of different sequences equals to ∏

−=

=
2,0

)(
ki

iEGK . As at each step a pair of adjacent vertices is 

fused, the maximal number of adjacent vertices occurs for a complete graph. The number of 

edges of the complete k -graph equals to 
2

)1( −⋅ kk . Then 

1−

2

1
,2 2

)!(
2

)!1(!
2

)1()(ˆ
−

= ⋅
=

−⋅
=

−⋅
= ∏ kk

ki k
kkkiiGK

29107,5)20(ˆ ⋅=K 284104,1)100(ˆ ⋅=K

. For example  and 

, . Thus, a search of effective methods of the solution of 
the task of edge collapse is required. 

9106,2)10(ˆ ⋅=K

The choice tree of the collapse for net  (Fig. 6.3) is represented in Fig. 6.7. We conclude 
that even for such a simple graph of decomposition we obtain widths of collapse, which 
distinguish in twice (8 and 4) for various sequences of collapse. 

3N

 
Theorem 6.1. Width of collapse for acyclic graph equals to maximal weight of edge. 
Proof. Operation of edge collapse of acyclic graph leads to obtaining of new acyclic graph, 

witch contains the number of edges lesser by unit. Moreover, this operation does not change 
the weights of remained edges. Thus, width of collapse does not depend on the order of edges 
choice and equals to maximal weight of edge. � 
 

Any simple chain may be replaced by edge with minimal weight under the width of 
collapse equals to the maximal weight of edge. This corresponds to the choice of the edge of 
maximal weight on a step. Not limiting generality we may consider compact graphs does not 
containing simple chains and pendent vertices. 
 

Proposition 1. If graph has cutvertices the width of collapse is equal to the maximum 
width of its 2-connected components (blocks). 

 
Theorem 6.2. Width of collapse for simple circle equals to . ))()(min(),((max 21,, 21

ewewew
eee

+

Proof. Simple circle is transformed to the circle of lesser dimension until a triangle will be 
obtained. At the collapse of triangle a graph consisting of single edge with a weight equaling 
to the sum of edges’ weights different from the fusing will be obtained. Thus, a width of 
collapse is defined on the one hand by maximal edge before fusion of triangle and on the 
other hand by the weight of the last edge. Consequently, the lower bound of width is the 
weight of maximal edge as well as summary weight of a pair of edges. � 
  

  
 

34



Theorem 6.3. Optimal collapse of simple circle corresponds to the choice of the edge with 
maximal weight at a step. 
Proof. Collapse of a simple circle is executed without the change of weights of edges until a 
triangle will be obtained. The choice of a maximal edge guarantees that at the obtaining of 
triangle three edges of minimal weights remain. Moreover, at collapse of triangle the choice 
of maximal edge provides the choice of a pair of vertices with a minimal summary weight. 
Really, the following expression is valid: )(min)(min))()((min 2121, 12121

eeewew
eeeee ≠

+=+ . � 

 

Z1,4

Z2

Z3

2

4

4 Z4 Z3

2 2

4

Z1,2 Z1

Z4

2

4

4
Z3,4

Z1 Z2

2 2

4

Z2,3

Z1 Z2

Z4 Z34

2

4

2

Z1,4

Z2,3
8

Z2

Z1 3, ,4

6
Z1,2,4

Z3

6

Z4

6

Z1,2,3

Z3,4

4

Z1,2 Z1 2 4, ,

Z36

Z1,2,3

Z4

6

Z1
6

Z2,3,4
Z1 4,

8
Z2,3 Z1

Z2,3,4

6

Z1 3, ,4

Z2
6

Z3,4

Z1,2
4

d=8 d=6 d=6 d=6 d=4 d=6 d=6 d=6 d=8 d=6 d=6 d=4

Z1Z4 Z1Z2 Z2Z3 Z3Z4

Z2Z3 Z1Z2
Z1Z3

Z1Z3
Z3Z4

Z1Z4 Z1Z2
Z2Z4

Z1Z4 Z2Z3
Z1Z3

Z1Z2

Fig. 6.7. Choice Tree for Edge Collapse of Weighted Graph 
 

Definition 14. Partial lattice of collapse 
Lattice consists of )1( −k  levels. At level i , points represent the edges of the current graph 

. Lines define the partial order relation iG <<  of edges for current and previous levels in such 
a way that: 
 

iiiiiii veueuue +=∨=⇔<< +++ 111 . 
 

Partial lattice of collapse is the vivid representation of the process of edge collapse. 
According to the definition of collapse operation, at each step one of edges is canceled. If the 
end vertices of this edge do not have common adjacent vertices (do not form triangles 
together with other edges), then at the next level all the edges are contained with the except of 
the canceling. If the edge forms one or a few triangles, then each pair of edges of triangle is 
replaced by a single edge. The recurrent expression for the number of edges is l rlii −−= − 11 , 
where r  is the number of triangles constituting by the canceling edge. The lattice illustrates 
the relations of edges. Thus, each edge at a step of collapse constitutes either the edge of the 
source graph or the sum of some edges.  
  
 

35



 
The lattices for two different sequences of collapse shown in Fig. 6.7 are represented in Fig. 

6.8. The canceling edges are marked by cross.  
 

Proposition 6.3. Each edge at a step of collapse is a sum of some edges of the source 
graph. 
 

Thus, width of collapse equals to the weight of an edge obtained at some step. Such an edge 
will be named a critical edge of collapse. Critical edge either is cancelled in the process of 
collapse or is remained by its last edge. 
 
 

Since combinatorial way of solution of the optimal collapse task requires an exponential 
time, we have to apply more effective methods. For the application of method of branches and 
bounds [Jay 98, Schrejver 91] we have to construct estimations of upper and lower bounds of 
collapse width. 
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e1 e5 e2 e3 e4
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e1 e6e2 e3 e4

4 42 2

4

a) Z4Z1, Z2Z3, Z1Z2 b) Z1Z2, Z3Z4, Z1Z3

Fig. 6.3. Partial Lattice of Collapse 
 

According to definition of width of edge collapse: 

 

∑≤≤
ee

ewGdew )()()(max . 

 

We may improve the upper bound as  
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






≤ ∑

′≠eee
ewewGd )(),(max)( . 

 
Really, at least one edge will be cancelled and the collapse width for the remained graph will 
not exceed the sum of its edges. Continuing the process described not more than (  times 
we come to the following estimation. Let  is the maximal weight of graph’s edge and 

 is the minimal one. Then on the second step of collapse the edge with the weight not 
exceeding  will be chosen and the collapse of remained part of the graph will not 
exceed ∑ . Continuing the estimations till the finish of collapse we obtain: 

)1−k
maxe

mine
max2 e⋅
− 2)(ew ⋅ mine
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( )∑ ⋅−−⋅−≤ minmax )2()(,)2(max)( ekewekGd . 

 
On the other hand at the first step the edge with the weight greater than  may not 

appear, at the second step  and so on. We have recurrent expression: 

max2 e⋅
maxmaxmax 422 eee ⋅=⋅+⋅
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Then  
max1max

1 2)( eeGd k
k ⋅=≤ −
− . 

 
Since these estimations are rough enough, we consider the process of addition of the edges 
connecting a pair of non-adjacent vertices. Let us study the influence of this operation on the 
width of collapse. 
 

Theorem 6.5. The addition of edge connecting non-adjacent vertices increases the width of 
collapse not more than by the weight of edge added. 

Proof. Let the width of collapse of graph G  equals to  and is reached by the 
sequence 

)(Gd
σ . Let us consider graph G e+  and execute its collapse with the help of the same 

sequence σ . Let . 21vve =
Under the execution of collapse operation we shall mark by symbol  all the vertices 

fusing with the vertex v  and by symbol v  all the vertices fusing with the vertex . Firstly, 
vertices  are non-adjacent in the source graph. Secondly, graph is connected. Therefore, 
at any step of collapse we obtain a vertex u , which is adjacent with  as well as with v . 
Fusion of this vertex in graph G  together with one of vertices  leads to creation of edge 

. Further this edge may participate in the constituting of critical edge or will be 
simply cancelled.  

1v

1 2 2v

21,vv

2

1v 2

21,vv

1vve =′

Let us consider the execution of operations mentioned in graph G e+ . Before the obtaining of 
triangle composed of the edge e  and a vertex u  the process does not differ from early 
described. At fusion of vertex u  together with one of vertices v  we obtain instead of edge 
with weight  an edge with weight 

21,v
)(ew ′ )e()( wew +′ . Further this edge either will be included 

in the critical edge of collapse or will be simply cancelled. In the first case the width of 
collapse is increased by value , in the second case – is not changed. � )e(w
Corollary.  

)()()( ewGdeGd +≤+ . 
))(),(max()( ewGdeGd ≤+  for pending edge (i.e. its degree is unit). 

))()(max),(max()( ewewGdeGd
Ge

+′≤+
∈′

 for non pending edge.  

 
In order to obtain more precise upper bounds we consider the process of adding of missing 

edges to any spanning tree of graph . Since the width of edged collapse of acyclic graph 
according to theorem 6.1 equals to maximal weight of edge, we may propose the following 
estimation of collapse width. 

G

 
Theorem 6.5. Width of a collapse does not exceed the sum of weight of maximal edge of 

spanning tree and weights of remained edges: 
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ReRe
ewewGd )()(max)( , where R  is a spanning tree of graph . G

 
To improve the estimations we may choose a spanning tree of maximal weight for 

minimization of sum. As a good enough approximation we may consider the standard task of 
a maximal weight spanning tree choice [Berge 01, Harary 71]. Note that the number of 
remained edges equals to cyclomatic number of graph 1)( +−= klGν . Then we may 
represent the estimation as: 

 
.)()1)(()( maxmax ekleGGd ⋅−=⋅+≤ ν  

 
Estimations of lower and upper bounds may be applied at the solution of optimal collapse 

task via classic method of branches and bounds [Jay 98, Schrejver 91]. In the next section we 
propose simple and effective heuristic technique of solution. 

 
 
7.4 Heuristic Technique of Collapse 

 
Since the complexity of combinatorial solution via complete choice is exponential and 

obtained estimations of upper and lower bounds for organization of solution via method of 
branches and bounds are rough enough, we should to find a simple and effective technique of 
edge collapse.  

Our interest in the precise methods is limited also by the fact we have not precise enough 
estimation of systems’ complexity at the step of collapse because the estimation of number of 
basis nonnegative solutions of linear diophantine system is a difficult task. So, we use the 
number of places as the parameter of complexity. 

According to results obtained for a simple chain and a simple circle we may suggest to 
choose the edge with a maximal weight at a step of collapse. We may choose the first or the 
random edge with the maximal weight in the case there are a few edges of maximal weight. 
Algorithm consists in pure implementation of collapse operation according to definition 
supplied with the rule for choice of edge with maximal weight. The complexity of such 
technique is about . Really, we have to execute 2lk ⋅ 1−k  steps and at each step we process 
not more than  edges, for which at collapse of triangles we process not more than l  incident 
edges. 

l

For comparison of various rules of edge choice at a step of collapse we generated a random 
graphs and executed edge collapse of them. We compared the choice of maximal, minimal 
and random edge at a step. Results obtained are represented in Table 6.1.  
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Table 6.1. Comparison of Collapses for Random Graphs 
Sequential Collapse 

Maximal Edge Random Edge Minimal Edge 
Number 
of 
Vertices 

Density 
(%) 

Simultaneous 
Collapse, 
Width  Width Percent Width Percent Width Percent 

20 442 35 7.9 191 44.6 231 52.3 
40 869 66 7.6 367 42.2 533 61.3 
60 1372 102 7.4 651 47.4 829 60.4 20 

80 1825 160 8.8 876 48.0 990 54.2 
20 1836 73 4.0 632 34.4 1002 54.6 
40 3699 139 3.8 1664 45.0 2133 57.7 
60 5539 214 3.9 2665 48.1 2948 53.2 40 

80 7354 314 4.3 3608 49.0 3908 53.1 
20 11602 160 1.4 4827 41.6 5829 50.2 
40 22973 316 1.4 7617 33.2 12341 53.7 
60 34334 501 1.5 13282 38.7 17559 51.1 100 

80 45582 754 1.7 17144 37.6 23008 50.5 
20 46073 288 0.63 19673 42.7 23781 51.6 
40 91715 612 0.67 42260 46.0 91715 50.5 
60 137684 997 0.72 67609 49.1 68957 50.0 200 

80 183652 1486 0.81 91015 49.6 91669 49.9 
 

For construction of Table 6.1 we used random uniformly distributed weights of edges with 
range from 4 to 20. Usage of different else ranges leads to another absolute values but 
preserves the percentage. We conclude that the worst choice is the choice of minimal edge. It 
becomes close to random choice of edge under the growth of number of vertices. The best 
choice is the choice of maximal edge, which provides the essentially lesser width of collapse. 
Notice that, the greedy strategy does not always lead to the optimal result; Fig. 6.9 illustrates 
this fact. 
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Fig. 6.9. An Example of Collapse 



 
Example of collapse for the sample graph with 8 vertices using maximal, random and 

minimal edge is represented in Fig. 6.2. Partial lattice of collapse under random edge choice is 
shown in Fig. 6.10. 
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Fig. 6.10. Partial Lattice of Collapse (Fig. 6.2) 

 
More precise (and more expensive) techniques involve several steps estimation 

implementing mini-max procedures [Levin 70, Jay 98]. For instance, in two-step algorithm 
we choose maximal edge, which provides minimum of the maximal weights of vertices at the 
next step. 

 
 
7 Telecommunication Protocols Verification Using 
Composition of Functional Subnets 

 
7.1 Protocol BGP Verification 

 
Communication protocol BGP. The Border Gateway Protocol (BGP) [Loogheed 89] is 

an inter-autonomous system routing protocol. It is the very significant for the whole Internet 
operability, so the autonomous systems constitute a backbone of the global data exchange. 
More than thirty RFC (Requests For Comments) are devoted to BGP protocol specification 
and refinement. Recently the most widespread is BGP-4 [Rekhter 95], but the distinctions in 
comparison with the first standard specification [Loogheed 89] are the very specific and 
inessential for a draft model construction. 

The primary function of a BGP speaking system is to exchange network reachability 
information with other BGP systems. This network reachability information includes 
information on the autonomous systems (AS's) that traffic must transit to reach these 
networks. This information is sufficient to construct a graph of AS connectivity from which 
routing loops may be pruned and policy   decisions at an AS level may be enforced. 

There are five types of standard BGP messages: 
 1 – OPEN, 
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 2 – UPDATE, 
 3 – NOTIFICATION, 
 4 – KEEPALIVE, 
 5 – OPEN CONFIRM. 

After a transport protocol connection is established, the first message sent by either side is 
an OPEN message.  If the OPEN message is acceptable, an OPEN CONFIRM message 
confirming the OPEN is sent back.  Once the OPEN is confirmed, UPDATE, KEEPALIVE, 
and NOTIFICATION messages may be exchanged. 

UPDATE messages are used to transfer routing information between BGP peers.  The 
information in the UPDATE packet can be used to construct a graph describing the 
relationships of the various autonomous systems.  By applying rules to be discussed, routing 
information loops and some other anomalies may be detected and removed from the inter-AS 
routing. 

BGP does not use any transport protocol based keepalive mechanism to determine if peers 
are reachable. Instead KEEPALIVE messages are exchanged between peers often enough as 
not to cause the hold time (as advertised in the BGP header) to expire. The KEEPALIVE 
message is a BGP header without any data. 

NOTIFICATION messages are sent when an error condition is detected. 
 

Model of protocol BGP. Petri net model of protocol BGP is represented in Fig. 7.1. The 
model describes asymmetric interaction of two systems. First system is represented with 
places  and transitions t , second system – with places  and transitions 

. Places  correspond to communication subsystem and model standard 
messages: OPEN, OPENCONFIRM, and KEEPALIVE. Notice that the model represents only 
procedures of connection establishment and maintenance, abstracting of data transfer for 
adjustment of routing tables.  Date interchange is implemented in state ESTABLISHED with 
the aid of standard messages UPDATE. This process is not displayed in model constructed. 
Semantic description of elements of the model is represented in Table 7.1. 

51 pp − 61 t− 106 pp −

127 tt − 1411 pp −
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IDLE1, p1

t1

OPENSENT1, p2

t2

ESTABLISHED1, p3

t3

KEEPALIVESENT1, p4

t4

KEEPALIVERECEIVED1, p5

t5

t6

OPEN, p11

OPENCONFIRM, p12

KEEPALIVE1, p13

KEEPALIVE2, p14

IDLE2, p6
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t8

ESTABLISHED2, p8

t9

KEEPALIVERECEIVED2, p9

t10

KEEPALIVESENT2, p10

t11

t12

 
Fig. 7.1. Petri net model of protocol BGP 

 
 

Decomposition of BGP protocol model. The decomposition of model into functional 
subnets is represented in Fig. 7.2.  

 
Table 7.1 Description of model’s elements
 

Place Description Transition Description 
61, pp  Initial state of systems 1t  Send OPEN message 

2p  Open request sent 7t  Receive OPEN message 

7p  Open request received 8t  Send OPENCONFIRM message 

83, pp  Connection established 2t  Receive OPENCONFIRM message 

4p  KEEPALIVE message sent 103, tt  Send KEEPALIVE message 

9p  KEEPALIVE message received 94 , tt  Receive KEEPALIVE message 

5p  KEEPALIVE message received 115, tt  Connection keep alive loop 

10p  KEEPALIVE message received 126 , tt  Disconnection 

11p  OPEN message   

12p  OPENCONFIRM message   

1413, pp  KEEPALIVE message   
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Notice that four drawn functional subnets 1Z , 2Z , 3Z , 4Z , defining a partition of source 
model, are not minimal.  As the result of Algorithm 4.4 application we obtain the 



decomposition into minimal subnets induced by the subsets 
. So, for instance, subnet }{},{},,,{},{},{},{},,,{},{ 109121187436521 tttttttttttt 2Z  constitutes a 

sum of two minimal subnets induced by transitions t  and  correspondingly. Problems of 
the functional subnets composition out of the minimal functional subnets were studied in 
[Zaitsev 04b, 04e]. 

3 4t

 p1

t1

p2

t2

p3

p5

t5

t6

p11

p12

 p3

t3

p4

t4

p5

p13

p14

3

4

p8

p9

p10




















1 

0 

1 

0 

 

p11

p12

p6

t7

p7

t8

p8

p10

t11

t12

p1

p1

t9

t10

Fig. 7.2. Decomposition of BGP protocol model 

Z1 Z2 Z4 Z3

 
Invariants of places. With the help of tool Tina [Berthomieu 04] we obtain the following 

basis invariants of the subnets enumerated in Fig. 7.2:  
 





=⋅=

1 1 1 1 0 1

0 0 1 1 1 1111
2

1
112115321

1 ,),(),,,,,(: GGzzxxxxxxZ , 
















=⋅=

0 1 0 0 1

1 0 1 0 0

0 0 1 1 1
222

3
2
2

2
11413543

2 ,),,(),,,,(: GGzzzxxxxxZ , 





=⋅=

1 1 0 0 1 0

0 0 1 1 1 1333
2

3
1121110876

3 ,),(),,,,,(: GGzzxxxxxxZ , 










=⋅=

1 0 1 0

1 1 1 0

0 0 1 1

0 1 1 1

444
4

4
3

4
2

4
114131098

4 ,),,,(),,,,(: GGzzzzxxxxxZ . 

 
The composition of the model is defined by fusion of eight contact places indicated in 

Fig. 7.2. Let us construct the system of equations for contact places:  

  
 

43



 



















=−−
=−−

=−
=−

=−−
=−−

=−−+
=−−+

.0:
,0:

,0:
,0:

,0:
,0:

,0:
,0:

4
4

4
2

2
214

4
4

4
3

2
313

3
2

1
212

3
2

1
211

4
3

4
1

3
110

4
2

4
1

3
18

2
2

2
1

1
2

1
15

2
3

2
1

1
2

1
13

zzzp
zzzp

zzp
zzp

zzzp
zzzp

zzzzp
zzzzp

 

 
The basis solutions of the system with respect to vector  
have the form  

),,,,,,,,,,( 4
4

4
3

4
2

4
1

3
2

3
1

2
3

2
2

2
1

1
2

1
1 zzzzzzzzzzz

 





























=

0 1 1 0 1 1 1 1 0 1 0

0 1 1 0 0 1 1 1 0 0 1

1 0 0 0 1 0 1 1 0 1 0

1 0 0 0 0 0 1 1 0 0 1

0 0 0 0 1 0 0 0 1 1 0

0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 1

R . 

 
Let us assemble the joined matrix G  of matrices G , , , . Notice that matrix 

 may be constructed in different ways depending on the order of calculation of invariants 
for contact places. As each contact place is incident to two subnets, so its invariant may be 
calculated by two different ways.  

1 2G 3G 4G
G































=

0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 1 1 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 1 0 0 0 0 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 1 0 1 1 1

G . 

 
After multiplication of matrices we obtain:  
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



























=⋅=

1 1 1 1 1 2 1 2 1 1 0 1 0 1

1 1 0 0 1 2 1 1 1 1 0 1 1 1

1 1 1 1 0 1 0 1 0 1 0 1 0 1

1 1 0 0 0 1 0 0 0 1 0 1 1 1

0 0 1 1 0 0 0 1 0 1 1 1 0 1

0 0 0 0 1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1

GRH . 

 
Notice that the source system has five basis solutions so sixth solution is the sum of second 
and fourth, and seventh – the sum of second and fifth.  

Therefore, the model of BGP protocol is p-invariant so, for instance, invariant,  
 

( )11111212121212=*x , 
 

which is the sum of second, third and fourth basis invariants, contains all the natural 
components. Consequently, the model of protocol is safe and bounded. For any reachable 
marking it holds that 3* =⋅ µx .  
 

p ’1

t ’1

p ’2

t ’2

p ’3

t ’3

p ’4

t ’4

p ’5

t ’5

t ’6

p ’11

p ’12

p ’13

p ’14

p ’6

t ’7

p ’7

t ’8

p ’8

t ’9

p ’9

t ’10

p ’10

t ’11

t ’12

 
Fig. 7.3. Dual Petri net of BGP protocol model 

 
Invariants of transitions. To calculate invariants of transitions we construct the dual Petri 

net (Fig. 7.3), decompose it (Fig. 7.4) and implement the technique described for place 
invariants. The decomposition contains six minimal functional subnets. For calculation of 
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invariants, it is convenient to consider the decomposition into two functional subnets. Since 
subnet 1Z ′  consists of 9 transitions, we may compose remained minimal subnets into one 
subnet with 5 transitions.  

The following matrix represents the basis invariants of transitions: 
 









011100011100
101111101111

 

 
As, for instance, the sum of two basis invariants 
 

( )112211112211* =y  
 

contains all the natural components, so the model of protocol BGP is t-invariant. Therefore, 
the model is consistent. Sequence , corresponding to 

invariant 

64121093541110932871
* tttttttttttttttt=σ

*y , provides 00

*

µµ
σ
→ .  

Notice that, though the model of protocol BGP is invariant, it contains deadlocks 
 and ( )1182 ,, ppp ( )1364 ,, ppp , reached via sequences t  and 

 correspondingly. It may be easily explained by the model does not 
represent timeouts provided by the source specifications. With additional transitions returning 
each system from the ESTABLISHED to the IDLE state the model becomes live. 

1611410932871 tttttttttt

35124 ttt10932871 tttttttt

 

t ’1

p ’2
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Fig. 7.4. Decomposition of dual Petri net into functional subnets 

  
 

46



 
Speed-up of computations. Let us estimate the speed-up of computations obtained in the 

assumption of the exponential complexity of the algorithms [Kryviy 99] for the solving of 
linear Diophantine systems in nonnegative integer numbers. Let the complexity is about , 
where  is the number of nodes of net.  

q2
q

Notice that even such rather tiny model allows the speed-up of computations. At 
calculation of place invariants, instead to solve the system of dimension 12, we solved five 
systems with the dimension not exceeding 8. If we not take into accounting polynomial 
multipliers, then we obtain sixteen fold  ( 1622 812 = ) speed-up of computations.  

Notice that, speed-up have been obtained for the net numbering about dozen of nodes. At 
investigation of large-scale nets, the speed-up may be rather huge [Zaitsev 04f, 05], so it is 
estimated (5.10) as exponential function , where rn−2 ),(max cmr ii

=  and  is the number of 

places of subnet 

im
iZ , c  is the number of contact places.  

 
 
7.2 Protocol ECMA Verification 
 

Model of communication protocol ECMA. Protocol ECMA (European Computer 
Manufacturer Association) is transport protocol situated between network and session levels 
of ISO model. Further, the model of protocol represented in [Berthelot 82] will be used. On 
the one hand, the model is simplified enough to be studied in article, on another hand, it allow 
the implementation of decomposition technique. Further studying model represents only 
connection-disconnection processes and abstracts of the concrete way of data transmission. 

Petri net model of protocol ECMA is represented in Fig. 7.5. Three basic parts of model is 
considered: left interacting system – places 41 pp − , transitions t 71 t− ; right interacting system 
– places , transitions ; communication subsystem – places . Semantic 
description of elements of the model is represented at Table 7.2. 

85 pp − 148 tt − 169 pp −
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Fig. 7.5. Model of protocol ECMA 

 
Table 7.2 Description of model’s elements
 
Place Description Transitio

n 
Description 

51, pp  Initial state of systems 81,tt  Send connection request 
62, pp  Waiting of connection 92,tt  Receive connection request 
73, pp  Transmission of data 103,tt  Receive connection acknowledgement 
84, pp  Waiting of disconnection 114,tt  Send disconnection request 
119, pp  Request of connection 125,tt  Receive disconnection request 
1210, pp  Acknowledgement of connection 136,tt  Receive disconnection acknowledgement 
1413, pp  Request of disconnection 147,tt  Receive counter disconnection request 
1615, pp  Acknowledgement of 

disconnection 
  

 
Decomposition of protocol ECMA. We decompose the source model of ECMA protocol 

represented at Fig. 7.5 in minimal functional subnets. Application of decomposition algorithm 
to model of ECMA protocol (Fig. 7.5) results in obtaining of set {  consisting 
of four minimal functional subnets represented in Fig. 7.6. 

},,, 2,21,22,11,1 ZZZZ
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Fig. 7.6. Decomposition of protocol ECMA 

 
Note that, as processes of system interaction are symmetrical, so pairs of subnets 1,1Z  and 
1,2Z , and also 1,2Z  and 2,2Z  are isomorphic. Thus, it is necessary to investigate further only 

properties of two subnets of four obtained. Different ways of minimal functional subnets 
composition allow the decomposition of the source model in left and right interacting systems 

1Z , 2Z  and also decomposition in subnets of connection establishing and disconnecting 1Z ′ , 
2Z ′ , where 2,11 1,1 ZZZ += , 2,21,22 ZZZ += ,  1,21,11 ZZZ +=′ , 2,21,22 ZZZ +=′ . 

 
Invariancy of protocol ECMA. We use the isomorphism of subnets 1Z  and 2Z . Firstly, 

we calculate invariants of subnet 1Z . Then we construct invariants of isomorphic net 2Z . 
And finally, we calculate invariant of whole given Petri net. 

Invariants of subnets 1,1Z  and 1,2Z  we represent as  
1,11

5
1
4

1
3

1
2

1
11211109321 ),,,,(),,,,,,( Gzzzzzxxxxxxx ⋅= , ( , 2,12

3
2
2

2
116151413431 ),,(),,,,,, Gzzzxxxxxxx ⋅=

where matrices  and G  have the following form: 1,1G 2,1

0110000
0000111
0011001
1100100
1001101

1,1 =G , 
0000111
0101001
1010010

2,1 =G . 

Note that, components of vector x , corresponding to subnets 1,1Z  and 1,2Z , are written in 
explicit form; they define indexation of columns of constructed matrices. Indexes of rows 
correspond to components of vectors ),,,,( 1

5
1
4

1
3

1
2

1
1

1 zzzzzz =  and ),( 2
1z , 2

3
2
2 zz2z = . 

We construct the system of equations of form (5.6) for contact places: 
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



=−−++
=−−++

.0
,0

2
3

2
1

1
4

1
2

1
1

2
3

2
2

1
4

1
3

1
1

zzzzz
zzzzz

 

Note that, in composition of subnets G  and G  places  and  are contact ones. 
General solution has the following form  

1,1 2,1
1p 3p

12
3

2
2

2
1

1
5

1
4

1
3

1
2

1
1 ),,,,,,,( Ryzzzzzzzz ⋅= , 

00010000
10000001
00100010
01000100
10001000
01100001
10000110
01101000

1 =R . 

For calculation of basis invariants of net 1Z  according to (4) we construct of subnets’ 
invariants G  and G  a joined matrix G : 1,1 1,2 1

000000001000
010100000000
101000000000
000001100000
000000000111
000000110001
000011000100
000010010101

1 =G  or 

000000001101
010100000001
101000000100
000001100000
000000000010
000000110000
000011000000
000010010000

1 =G . 

Note that, the difference between matrices is contained in columns corresponding to 
contact places (  and ). In the first case invariants of contact places are calculated 
according to matrix G , and in the second case – according to . Indexation of columns 
corresponds to vector ( . 

1p 3p

,, 2x

1,1

1x

1,2G
),,,,,,,,, 16151413121110943 xxxxxxxxxx

Matrix of basis solutions has the following form  

000001100000
000010011101
101011000100
010100110001
000000001111
111110010101
111100000111

1 =H . 

Note that, after a calculation of product GR ⋅  according to (5.9) we have deleted linearly 
dependent rows in matrix.  

Further, in the same way, we construct invariants of whole net, that is the composition of 
subnets 1Z  and 2Z . System of equations for contact places has the following form: 



















=−−−++
=−−−++
=−−−++
=−−−++

=−−++
=−−−+
=−−−+
=−−++

.0:
,0:
,0:
,0:

,0:
,0:
,0:

,0:

2
4

2
2

2
1

1
5

1
2

1
116

2
5

2
2

2
1

1
4

1
2

1
115

2
4

2
2

2
1

1
5

1
2

1
114

2
5

2
2

2
1

1
4

1
2

1
113

2
7

2
4

1
6

1
5

1
212

2
6

2
4

2
2

1
7

1
511

2
6

2
5

2
2

1
7

1
410

2
7

2
5

1
6

1
4

1
29

zzzzzzp
zzzzzzp
zzzzzzp
zzzzzzp

zzzzzp
zzzzzp
zzzzzp

zzzzzp

 

Let us solve a system, calculate a product GR ⋅  and delete linearly dependent rows. We 
obtain basis invariants of Petri net as follows:  
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0000000000001111
0000000011110000
1111000001110111
0101001101000001
1010110000010100
0000100100001101
0000011011010000
1111011001010111
1111100101110101

=H . 

Result obtained coincides with invariants calculated with usual methods for whole net and 
also with invariants obtained with direct composition of four minimal functional subnets.  

Thus, Petri net is invariant so, for instance, the invariant  
( )1111111112121212

* =x , 
that is the sum of basis invariants with numbers 1, 3 and 9, contains all natural components. 
Therefore, model of protocol ECMA is safe and bounded.  

It should to note, that though net is also t-invariant one, it contains a deadlock with tokens 
in places  and . Net reaches this deadlock as a result of firing sequence t  or t . 9p 11p 51t 15t
 

Speed-up of invariants calculation. Let us estimate obtained speed-up of computations in 
the assumption of exponential complexity of algorithms [Kryviy 99] for solving of linear 
Diophantine systems in nonnegative integer numbers. Let the complexity is , where  is 
number of nodes of net.  

q2 q

Source net contains 16 places, thus, direct calculation of invariants require solving a 
system with 16 unknowns. Composition of four minimal subnets requires solving system of 
the size 7 to obtain invariants of minimal subnets and to solve a system of the size 12 to 
obtain invariants of contact places. Sequential composition assumes solving system of the size 
7 to obtain invariants of minimal subnets, solving system of the size 5 to obtain invariants of 
contact places of first composition and solving system of the size 8 to obtain invariants of 
contact places of second composition. Note that, at the exponential growth of functions, the 
complexity of matrices multiplication representing by polynomial of third degree is irrelevant 
and will not be considered.   

Complexities of calculation for each of enumerated three ways of invariants obtaining 
may be estimated by following expressions:  

65000216 ≈=IS , , . 430022 127 ≈+=IIS 500222 857 ≈++=IIIS
Thus, decomposition allowed the acceleration more than ten times in the comparison 

with traditional methods. Moreover, sequential composition allowed the additional tenfold 
speed-up.  

It should to be noted, that speed-up has been obtained for net numbering three tens of 
nodes. At research of large-scale nets, the acceleration may be rather huge, so it is estimated 
as exponential function (5.10).  

 
 
7.3 Protocol TCP Verification 

 
Specifications of protocol TCP. TCP is the major transport protocol of Internet. Namely 

via protocol TCP more than two hundreds petabits of public and private information is 
transferred per day. Therefore, a formal proof of TCP protocol correctness has a key 
significance for the grounding of modern global networks reliability. 

Standard specification of protocol TCP has been presented in year 1981 in RFC 793 
[Postel 81]. This document had become the result of prolonged discussions reflected, for 
instance, in RFC with numbers 44, 55, 761. In the process of exploitation, it was made 
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alterations concerned with such items as slow start RFC 1122, quick recovery RFC 2001, 
repetitive transmission RFC 2988. The improvement of standard is not ceased at present. It is 
confirmed, for instance, by RFC 3360, 3481, 3562, which propose technique of reliable 
interaction at connection reset, special rules for wireless lines connections, algorithms of keys 
exchange for protection of information.  
 

Petri net model of protocol TCP. Petri net model of protocol TCP is represented in Fig. 
7.7.  
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Fig. 7.7. Petri net model of protocol TCP  
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Model consists of three parts: left interacting system; right interacting system; 
communication subsystem. Each of interacting systems corresponds exactly to standard state 
diagram of protocol [Postel 81]. Notations of right system contain prefix “x”. States of 
diagram are represented by places of the same name. At that the additional places 
corresponding to flags SYN, FIN, ACK of packets’ headers are used. These places constitute 
the communication subsystem. Flags of packets transmitting by right interacting system have 
prefix “x”. Notice that, for clearness of model the flag of acknowledgement ACK is 
represented by separate places corresponding to its receiving either as answer on flag SYN 
(SYNACK), or as answer on flag FIN (FINACK). Moreover, since model does not contain 
the descriptions of application level protocols, commands OPEN, CLOSE, SEND are 
represented merely in notations of corresponding transitions. The names of residuary 
transitions are chosen as first letters of flags waiting for which are represented in standard 
state diagram of protocol [Postel 81]. Notice that, the source state diagram represented in 



[Postel 81] is defined more exactly accordingly to RFC 896 anticipating congestion avoidance 
facilities and RFC 1122 studying the slow start problem.  

 
Decomposition of TCP protocol model. Let us implement the decomposition of protocol 

TCP model represented in Fig. 7.7 into its minimal functional subnets according to Algorithm 
4.1.

CLOSED

LISTEN

POPEN

SYNSENT

SYNRCVD
rs1

SEND

rs

ESTAB

ras

rsa

AOPEN

SYN

xSYN

SYNACK

xSYNACK

CLOSED

ESTAB

CLOSEWAIT
FINWAIT1

rf
CLOSE2

LASTACK FINWAIT2

CLOSING

CLOSE3
rafrf1

TIMEWAIT

rf2ra 1f
ra 2f

end

FIN

xFIN

FINACK

xFINACK

XCLOSED

xLISTEN

xSYNRCVD xSYNSENT

xPOPEN

xrs xSEND

xrs1

xAOPEN

xESTAB

xrsa
xras

SYN

xSYN

SYNACK

xSYNACK

xESTAB

xFINWAIT1 xCLOSEWAIT

xCLOSE2 xrf

xFINWAIT2

xraf

xTIMEWAIT

xr 2f

xCLOSING

xLASTACK

xCLOSE3xr 1f

xra 2fxra 1f

xend

FIN

xFIN

FINACK

xFINACK

XCLOSED

Z2Z1

Z4 Z3

 
Fig. 7.8. Decomposition of protocol TCP model  

 
Application of decomposition algorithm 4.1 to protocol TCP model (Fig. 7.7) leads to the 

obtaining of set { , consisting of four minimal functional subnets represented in 
Fig. 7.8. 

}4,3,2,1 ZZZZ

Notice that, by virtue of symmetry of systems’ interaction processes the pairs of subnets 
1Z  and 2Z as well as 4Z  and  are isomorphic. Therefore, it is required to investigate the 

properties only for two of enumerated four subnets. 
3Z
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2 2

4

4

2
4

4

8 2 2

4

4

Z1 Z2

Z3Z4

Z2

Z3

Z1,4 Z1,4 Z2,3
2 2

4

4

Z1 Z2

Z3Z4 Z4 Z3

Z1,2 Z1,2

Z4,3
 

a) Z1+Z4; Z2+Z3; Z1,4+Z2,3  b) Z1+Z2; Z4+Z3; Z1,2+Z4,3 
 

Fig. 7.8. Sequential composition of protocol TCP model  
 
Various manners of minimal functional subnets composition allow the decomposition of the 
source model into left and right interacting systems  and , and the decomposition 
into net establishing the connection  and disconnecting net , where 

, , 

Zleft Zright
Zup
1Z

Zdown
41 ZZZleft += 32 ZZZright += 2ZZup += , 34 ZZZdown += . 

 
Invariance of TCP protocol model. In [Berthelot 82] it was shown that a correct 

telecommunication protocol has to be invariant one. Known methods of invariants calculation 
[Kryviy 99] have exponential complexity that makes its application difficult for investigation 
of real-life objects’ models numbering thousands of elements. The model of protocol TCP 
(Fig. 7.7) allows the convincing illustration of this fact. However, net contains only 30 places 
and 28 transitions, the calculation of basis invariants for natural generators by known tool 
Tina [Berthomieu 04] had not been completed in 24 hours.  

Let us consider the graph of decomposition (Fig. 7.9). In [Zaitsev 04f] the sequence shown 
in Fig. 7.9 a) was implemented. Maximal number of equations equals to 8 in spite of 12 for 
simultaneous composition. We implement stepwise composition for protocol TCP model 
according to optimal sequence represented in Fig. 7.9 b). It guarantees the maximal number of 
equations equaling to 4. 

Let us enumerate places according to Table 7.3 for calculation of invariants. Basis 
invariants of subnets 1Z  and 4Z  are calculated with the aid of tool Tina [Berthomieu 04]. 
Invariants for isomorphic subnet 2Z  and  are constructed out of invariants obtained. 3Z
 

Table 7.3. Places of net 
 

# Name # Name # Name 
1 CLOSED 11 TIMEWAIT 21 XLISTEN 
2 LISTEN 12 SYN 22 XSYNSENT 
3 SYNSENT 13 XSYN 23 XSYNRCVD 
4 SYNRCVD 14 SYNACK 24 XESTAB 
5 ESTAB 15 xSYNACK 25 XCLOSEWAIT 
6 CLOSEWAIT 16 FIN 26 xFINWAIT1 
7 FINWAIT1 17 XFIN 27 XLASTACK 
8 LASTACK 18 FINACK 28 XCLOSING 
9 CLOSING 19 xFINACK 29 xFINWAIT2 
10 FINWAIT2 20 xCLOSED 30 XTIMEWAIT 

 
We implement the sequence of stepwise composition represented in Fig. 7.3 b). 
 

• Composition: Z1+Z2 
 
With respect to numeration of places defined by Table 7.3 the invariants of subnets 1Z  and 

2Z  may be represented as: 
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,),,,,,(),,,,,,,,( 11
6

1
5

1
4

1
3

1
2

1
11514131254321 Gzzzzzzxxxxxxxxx ⋅=  

 
,),,,,,(),,,,,,,,( 22

6
2
5

2
4

2
3

2
2

2
1141512132423222120 Gzzzzzzxxxxxxxxx ⋅=  

 
where the matrices have the form 
 

011000000
100010000
000100011
001011000
010000111
000011111

21 == GG ,  

 
Notice that, components of vectors jx  corresponding to subnets 1Z  and 2Z  are written in 

explicit form. They define the indexation of columns of matrices constructed. Indexes of rows 
correspond to components of vectors ),,,,,( 1

6
1
5

1
4

1
3

1
2

1
1

1 zzzzzzz = , ),,, 2
6

2
5

2
4

2
2

2 zzzzz ,, 2
3z( 2

1z= . 
Let’s construct the system of equations with the form (5.6) for contact places: 

 











=−+
=−+
=−−
=−−

.0:
,0:
,0:
,0:

1
5

2
6

2
215

2
5

1
6

1
214

1
6

1
3

2
413

2
6

2
3

1
412

zzzp
zzzp
zzzp
zzzp

 

 
Notice that, in composition of subnets 1Z  and 2Z  are used such contact places as , 
, , . The general solution of system has the form 

12p

13p 14p 15p
 

2,12
6

2
5

2
4

2
3

2
2

2
1

1
6

1
5

1
4

1
3

1
2

1
1 ),,,,,,,,,,,( Ryzzzzzzzzzzzz ⋅= ,  

 

 0 0 0 0 1 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 1 0 0 0
0 1 0 0 0 0 0 0 0 0 1 0
0 1 1 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0

=2,1R . 

 
For calculation of basis invariants of net  according to (5.9), we construct the joint 

matrix G  out of invariants of subnets  and G : 
2,1Z

22,1 1G
 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 1
0 0 0 0 0 0 0 1 0 1 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1 1 1

=2,1G . 

 
The indexation of columns corresponds to vector 

).,,,,,,,,,,,,,( 24232221201514131254321 xxxxxxxxxxxxxx  
Invariants of contact places are calculated according to matrix for subnet 1Z . Matrix of basis 
solutions  has the form 2,12,12,1 GRH ⋅=
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 0 0 1 1 1 1 0 0 0 1 0 0 0 0
 0 0 0 0 0 1 0 0 1 1 0 0 1 1
 1 0 0 0 0 0 1 0 0 0 0 1 1 1
 1 0 0 1 1 0 1 1 0 0 0 0 0 0
 0 0 0 1 1 0 0 1 0 1 1 0 0 0
 1 1 0 0 0 0 0 0 1 0 0 0 1 1
 0 0 0 0 0 0 0 0 0 1 1 1 1 1
 1 1 1 1 1 0 0 0 0 0 0 0 0 0

=2,1H . 

 
• Composition: Z4+Z3 

 
The invariants of subnets 4Z  and  may be represented as 3Z

 
,),,,,,(),,,,,,,,,,,( 44

6
4
5

4
4

4
3

4
2

4
1191817161110987651 Gzzzzzzxxxxxxxxxxxx ⋅=  

 
,),,,,,(),,,,,,,,,,,( 33

6
3
5

3
4

3
3

3
2

3
1181916173029282726252420 Gzzzzzzxxxxxxxxxxxx ⋅=  

 
where the matrices have the form 

 

011000000000
000100000110
100011000001
010001001010
001010110101
000011111111

34 == GG . 

 
System of equations for contact places has the form: 
 











=−+
=−+
=−−
=−−

.0:
,0:
,0:
,0:

4
4

3
6

3
319

3
4

4
6

4
318

2
6

4
2

3
517

2
6

3
2

4
516

zzzp
zzzp
zzzp
zzzp

 

 
The general solution of system may be represented as 

 
3,43

6
3
5

3
4

3
3

3
2

3
1

4
6

4
5

4
4

4
3

4
2

4
1 ),,,,,,,,,,,( Ryzzzzzzzzzzzz ⋅= ,  

 

 0 0 0 1 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 1 1 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0
0 1 1 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0

=3,4R . 

 
For calculation of basis invariants of net  according to (5.9), we construct the joint 

matrix G  out of invariants of subnets  and G : 
3,4Z

33,4 4G
 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

=3,4G . 
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The indexation of columns corresponds to vector  

).,,,,,,,,,,,,,,,,,,,( 3029282726252420191817161110987651 xxxxxxxxxxxxxxxxxxxx  
Matrix of basis solutions  has the form 3,43,43,4 GRH ⋅=
 

 0 1 0 0 1 0 1 0 1 0 0 0 1 1 0 0 0 0 0 1
 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 1 1 1
 1 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0
 1 1 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 1 1 0 0 0 1 0 1 0 1 1 0 1 0 1
 1 0 1 1 0 1 0 1 0 0 0 1 0 0 0 0 0 1 1 0
 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

=3,4H . 

 
 

• Composition: Z1,2 +Z4,3 
 

System of equations for contact places has the form: 
 













=−−−−+++
=−−−−+++
=−−−−+++
=−−−−+++

.0:
,0:
,0:
,0:

3,4
8

3,4
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3,4
4

3,4
1

2,1
6

2,1
5

2,1
3

2,1
124

2,1
8

2,1
5

2,1
4

2,1
1

3,4
6

3,4
5

3,4
3

3,4
120

3,4
7

3,4
6

3,4
3

3,4
2

2,1
8

2,1
7

2,1
4

2,1
25

2,1
7

2,1
6

2,1
3

2,1
2

3,4
8

3,4
7

3,4
4

3,4
21

zzzzzzzzp
zzzzzzzzp
zzzzzzzzp
zzzzzzzzp

 

This system has 48 basis solutions constituting matrix R : 

 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0
0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0
0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0
0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0
0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0
0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0
0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0
0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1
0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1
1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1
0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0
0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0
1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1
0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1
1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0
0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0
1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

=R

 

Let us construct the joint matrix G  out of invariants of subnets G  and : 2,12,1 H= 3,43,4 HG =
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 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0
1 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

=G  

Matrix of basis solutions  after the erasing of nonminimal solutions has 
the form: 

3,43,43,4 GRH ⋅=

 

  1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1
 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1
 1 1 0 0 0 1 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 1 1
 1 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 1 1 0 1 1 1
 1 0 1 1 0 2 1 1 1 1 1 0 0 1 1 0 0 0 0 1 0 1 1 0 2 1 1 1 1 1
 1 0 1 1 0 2 1 0 0 1 1 0 0 1 1 1 1 1 1 1 0 1 1 0 2 1 0 0 1 1
 1 2 0 0 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 2 0 0 1 0 1 1 1 1 1
 1 2 0 0 1 0 1 0 0 1 1 1 1 0 0 1 1 1 1 1 2 0 0 1 0 1 0 0 1 1
 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
 1 0 1 1 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0
 1 0 1 1 0 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0
 1 1 0 0 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 1 1 0 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1 1 0 0 0
 1 1 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1
 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 1 0 0 0 1 1
 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 1 0 1 0 0 1 1 1
 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 1 1 1
 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 1 1
 0 1 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1
 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 1 1

=H  

Since, for instance, the sum of all the rows has all the natural components, model of protocol 
is p-invariant and, consequently, it is bounded and safe net. 

In the same way, using dual net and decomposition, it may be shown that model is t-
invariant also. It means that net is persistent and constitutes the necessary conditions for its 
liveness. 

Notice that, expenses of time for invariants calculation via stepwise composition of 
functional subnets completely corresponds to exponential estimations of speed-up (5.10). The 
total time for construction of basis invariants of places did not exceed 10 seconds on 
computer Pentium (3.2 GHz CPU, 0.5 Gb memory).  

 

 
8 Conclusions 
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In present work the concept of functional subnet of Petri net was introduced and studied. 
The properties of the set of functional subnets were investigated. Two different techniques of 
generating set of functional subnets construction were studied: with logic equations and with 
an ad-hoc algorithm. It was shown that the time complexity of algorithm is linear. Program 
realization of algorithm was implemented. Together with [Zaitsev 90, 97], where formal 
description of transmission function for functional timed Petri net was obtained, the present 
work gives the complete technique of nets’ properties analysis based on obtaining of 
functional subnets, algebraic description of their transmission function and consequent 
equivalent transformations.   

Basis of compositional analysis of Petri nets is constructed. It is aimed to speed-up of Petri 
net properties determination with the aid of linear algebra methods based on fundamental 
equation of net and invariants. For investigation of Petri nets properties it is requires to solve 
systems of linear Diophantine equations over nonnegative integer numbers. All known 
methods of such systems solution have exponential calculation complexity. The technique 
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proposed and studied in paper allows the speed-up of calculation of invariants. This technique 
is based on the decomposition of Petri net into functional subnets and consequent 
composition. The speed-up obtained is exponential with respect to the number of places of 
source Petri net. The technique also allows the speed-up of the fundamental equation solution. 

Analysis of real-life models of systems and processes numbering thousands of elements 
with early known methods was practically unrealisable task so it required calculation 
expenses measuring by years.  Application of compositional analysis allows the exponential 
speed-up of computations and in that way to cut essentially a time of tasks solution.  

Decomposition-based solution of state equation and calculation of invariants consists in 
two major stages: solution of systems for minimal functional subnets and solution of system 
for contact places. At large-scale nets analysis the number of contact places may be huge 
enough. This implies the increase of overall calculation complexity.  

Sequential composition is aimed to decrease the dimension of solving systems. Instead of 
one system of a huge dimension for contact places we propose to solve a sequence of systems 
with essentially lesser dimension. At exponential complexity of system solution this technique 
provides a considerable additional speed-up of computations. Decomposition was presented 
with weighted graph, which is transformed to a single vertex at sequential composition. The 
corresponding task was named a collapse of weighted graph. Edge or pairwise collapse has 
been chosen as the most effective kind of collapse. Width of collapse equals to maximal 
weight of edge and corresponds to maximal dimension of solving system. 

Properties of edge collapse were studied. Upper and lower bounds for width of collapse, 
which may be applied in the solution of the task with methods of branches and bounds, were 
obtained. Simple and effective heuristic algorithm of edge collapse based on maximal weight 
edge choice was proposed. It was applied to a series of automatically generated random 
graphs. For small graphs we showed that result is close to optimal. For huge graphs we 
obtained results essentially better than for random collapse. Results obtained prove the 
practical value of sequential composition for additional speed-up of state equation solution 
and invariants calculation. 

The obtained results are illustrated by examples of telecommunication protocols 
verification with the help of the decomposition of Petri net models into functional subnets and 
their composition. Speed-up of invariants calculation was obtained for such well-known 
protocols as BGP, ECMA, TCP. 
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