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Abstract

Paper gives aformal grounding of know heuristic Toudic method for the solution of linear
diophantine homogeneous systems of equations in nonnegative integer numbers. In
particular nonnegative solutions are required for calculation of the invariants for Petri nets.
At first we construct the solution for one equation. Then the solution is expanded to whole
system of equations. To generate all solutions via the Toudic's basis a linear combination
was extended by special operation of reduction in common measure of vectors
components.
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1. Introduction

The problem of the solution of linear diophantine homogeneous systems of equations arises in the
Petri net theory [3] during the process of net invariants calculation and aso in other fields of computer
science. Invariants are powerful tools for investigation the major properties of the Petri net. Its allow to
determine boundness, safeness, necessary conditions of liveness and deadlock-free. These properties
are significant for real objects analysis[3] especially communication protocols, enterprise systems,
computer hardware and software.

It is known a heuristic method proposed by Toudic [1]. This method allows obtain nonnegative
integer solutions by the means of matrix transformations. Method was introduced without a formal
grounding. At start we have identity matrix that at finish contain the basis solutions. But the
completeness of the basis was not proved. Now do not looking at asymptotic exponential complexity
this method is widely used in enterprise Petri net analysistools. This paper gives aformal grounding of
Toudic method.

It is wide known in the mathematics a lot of methods to calculate solution of the system of linear
equation in rational numbers. A variety of those include theoretical constructions based on calculation
of matrix determinants, classical Gauss method [4] and also special numerical methods introduced for
the minimization of computational error.

If we consider an integer matrix of the system and calculate an integer solutions then a special
methods are required. This group of methods is based on unimodular transformations of matrix [6] to
obtain Smith normal form. It is known special
polynomial algorithms[2] used solutions in the classes field of deductions modulo of prime numbers
to construct atarget general integer solution of the system.

In the Petri net theory the solutions of the state equation [3] are the transition firing count vectors
and have to be a nonnegative. Homogeneous systems are used for obtaining of the net invariants that
are apowerful tool for the structural properties of Petri net investigation [3]. It isthe specia problem
to construct a basis of nonnegative integer solutions of a system. In this paper this problem is solved
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for homogeneous system. To generate al solutions from Toudic's basis we introduce a special
operation of vector reduction in common measure of components.

2. Solution of one equation

We start from the construction of solution for one equation. So we have
axx-bxy=0 Q)
where Q, X, t_), Y are nonnegative integer vectors; dimension of a, X ism, dimension of 5, y isn;

a, b are known coeffici ents; X,y are unknown variables.

)
/

Theorem 1. An arbitrary solution of (1) may be represented as , where k is a common

measure of Z>G vector components; Z = (Z,Zy o1 2,22, 25 ooy 22 ey 20, 25 .o Z0) - 2N

nonnegative integer vector,

b, 0.0 a 0 . 0
b, 0.0 0 a . O
b, 0 .0 0 0 . &
Ob .0 a 0 . O
0

- &
o

0O a, .. O

P o o o

In other words, rows of matrix G are basis solutions for each pair (1,@;) . A formal description of

’

matrix G may be provided as following. Let us denote g' [-th row of matrix G. Then g' J=1m
has such nonzero components as
91 -1 div 1 = b((l-l) mod n)+11

G me-1 mod n+1 — &(-1) div n)+1
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Proof. Thus, we have (X,Y) = .Letus (C,d) isan arbitrary solution of (1). We haveto

prove that exists K, Z so that

kxc,d)=z>G )
We write more detailed repr@entati on of (2)

'ahxz ¢, %=0, j=1m

aa xz, d; =0, i=1n @

| j
The proof will be executed by a constructive approach. We suggest the concrete solution of the system

©)
‘| k=a>xc (or k=bxd)
|z| =C; xd., J—Lml—Ln
Now we demonstrate that (4) isthe sol ution of (3):
ah>c xd - ca@x=cbxd-c@adc=c xb>d-ax)=0, j=1m

(4)

éaj )Cj xdi - di x§.>€=d| x§.>€' di >€>€=O, |=]71
i
So (4) isthe solution of (3). []

It is convenient to introduce a special operation for an arbitrary integer vector with nonnegative
components. This operation < X > calculates the results of vector X reduction in common measure of
components soif ¥ =< X > then anatural Ksuchas K >y = X exists.

Hence, solutions of (1) may be represented in the form

X=<272:G>.

Theorem 2. Basis presented in Theorem 1 isaminimal.

Proof. Let us choose in the matrix G an arbitrary basis solution

=(O,...,h,...,0,0,...,aj,...,O) ()

Now we demonstrate that solution (5) can not be obtained from the residuary basis solutions (rows
of matrix G) by means of such operations as sum of vectors multiplied by a constants and by division
on integer.

Redlly, any solution that has nonnegative component in the position j has al'so nonnegative
component in any position |, | 1 j . And then we can not obtain zero in this position with the

operations of addition, multiplication and division on nonnegative number. [ ]

So in this section was obtained aformal method for the solution of one equation. A basis consists
of M~ n vectors represented by the matrix G.
3. Solution of a system of equations

Now we consider a system

X>A=0, (6)
where Aisagiveninteger M~ N matrix, X isan unknown nonnegative integer vector.
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We introduce the transformations of matrixes. We shall be obtaining a matrix D from the matrix A
with two elementary transformations:

1) Writelineyinto linev:

V= Y

2) Write the sum of linesy and z multiplied by a constants into line v:

V= ¢, dY +c, %7

In such case the matrix D can be obtained from matrix A by means of multiplying from the left on

matrix of transformation R. Matrix R has such nonzero components:
|. For every transformation 1):

r,y =1
I1. For every transformation 2):
I’V’y = Cy, Iy, =C,
It may be easily proved if we consider the representation of D:
D=RxA d =8l e,
k

Our method of system solution is similar to a Gauss method. It is based on the solution of one
equation and substitution of the obtained general solution into the residuary part of system. We process
until all equations will be solved and we will obtain so a zero matrix.

At first consider a solution of one (for example first) equation of (6). So we have equation

x>a'=0
It may be easily constructed 1 *,1°, 1" such sets of indexes as
_r: O_ . _ - _r:
1" ={ila, >0, 1" ={ila,=0, 1" ={ila,<0}.
Further, according to Theorem 1 we construct a matrix of solutions with transformations|, I1:
0y! 0y!
(1°) (1)
=ZX- - - - - - == - - - - - =ZxR.
a*r )" G

=<2>R> ork:Xx=2:R (7)
ultiply (6) by anatural number K and substitute (7) in (6)
=0

O D3
>
|

=0, (8)
where D = R > A. It has to be mentioned that solution of an equation adds new variablesto the
Theorem 3. System (8), (7) is equivalent to the system (6).
Proof. Transformations above prove the necessary condition. It shall be proved the sufficient one.
Wereplacein (8) Z* R according to (7) and obtain
k>x>A=0
So kisanatural, we divide above equation by K and obtain (6). []

Now we consider the process of the consecutive solution for equations of the system.

187



1l
N
NI
;U

s
*A=0

mgm such a manner we obtain
RS RYSA=0

enote

R=R":R"L:nR!

ONl x|
:U

ont

|_NI

@

C\I
N @ g 3

1
=}

3

*A=0, R*A=0,
at each step we reduce a one equation of the system. So we have
0

NI ﬁﬂ N S5 NI
2z

s

R
nce
0=0.
Hence, an arbitrary vector Z isthe solution of the system. The final solution of the system (6) may
by represented as
X=<ZR>ork>X=2>R. (11)

So according to Theorem 3 we used on each step the equivalent (reversible) transformations, we
have proved the following theorem.

Theorem 4. Expression (11) represents all the nonnegative integer solutions of system (6).

Hence it’s required find amatrix R to solve the system. Matrix R contains basis solutions. To
generate an arbitrary solution alinear combination and reduction in common measure of vectors
components are used.

4. Description of the algorithm

Expression (11) may be written as
X=<Z>R>E>,
where E isidentity matrix. Then accounting the process of matrix R construction we obtain
R=R"sR™:s:R:E.
So to calculate matrix R it isrequired to repeat all the transformations of the source matrix A
with the identity matrix E.
Hence, we come to Toudic’s [1] description of the algorithm.

Algorithm:
StepO.Letus D= A, R:=E.
Step 1. If D =0then Stop. Matrix R isthe result matrix of basis solutions of system.
Step 2. If all the columns of matrix D contain nonzero coefficients of the same sign then Stop.
System is inconsistent and has only trivial solution.
Step 3. Choose an arbitrary column j of matrix D with aminimal value of product |1 ™| ‘I ‘
—r: O_ - _ - _r:
where | " ={i|a; >0}, 1" ={i|a; =0}, | ={i|a; <O}.

Step 4. Construct matrix D€ in such amanner: copy to matrix D¢ rows 1 © of matrix D and then
write additional rows for each combination of (k,r),kT 15T I ‘ak J‘ X

Step 5. Execute the same transformations with matrix R to construct matrix R(.
Step 6. Assign D .= D( R:= R( and goto Step 1.
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At Step 3 the column choice provides the minimal quantity of new solutions for corresponding
equation. According to previous results rows of the matrixes D and R may be divided together in a
common measure of components at any step of the algorithm.

Note that a peculiarity isin the manner of obtained basis R usage to generate al the solutions. We
expand the linear combination with nonnegative integer coefficients with a new operation of reduction
in common measure of vectors components. So the operation of the division by natural number does
not produce new zero or nonzero components then additional operation of the reduction does not
influent on invariant supports obtaining. Note that support [1,3] is a set of nonzero components of the
solution.

5. Example consideration

It will be solved the following concrete system of equations to illustrate obtained results:
I 59X +5XX;, - 2XX3 - 2%X, =0
:’ 2X% = DXX, - 5XX5 - 53X =0 (12)
¥5><x1 +2XK, +2XXg - 2%X, - 5X%; =0
In the matrix form (6) we have
®» 5 -2 -2 08
X = (X, X5, Xg, X4, X5 ) , Azgz -5 -5 0 - 5: :
& 2 2 -2 -5
We write the pair of matrixes (D, R):

5 2 51 000
5 -5 2010
-2 -5 20010
-2 0 -20 0 0 1
O -5 -50 0 0 0 1
The minimal value of ‘I +" ‘I ) ‘ = 3 is obtained for the second column; it will be chosen asa
columnj. So, we have | =2 and calculate
-2 0 -20 0 0 1
35 0 25 2 0 0
21 0 295 0 2 O
25 0 155 0 0 O
Further the column j =1 will be chosen

0O 0 -1210 4 0 35
0O 0 16110 0 4 21

O O -2010 0 0O 25
After processing the column j =3 we obtain
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0 0 0280 64 48 203(;‘

O 0 0360 O 80 820
And finally, reducing first and second rows by 4, we obtain basis solutions
R_850 16 12 203 006
§9o 0 20 205 164
It is easily may be calculated that vector
b=(20 2 4 51 2

is the solution of the system (12) but it can not be obtained as a linear combination of basis solutions
with nonnegative coefficients. With the operation of reduction it may be represented as

b=(r'+r?%)/8.

Analogously we may calculate
(150,24,28,407,8) = (3xr* +1?)/ 2,
(170,8,36,409,24) = (r* +3xr?)/ 2,
(130,4,28,307,20) = (4 X" + 207 %) /16.

6. Conclusions

In present work aformal grounding for known as heuristic and widely used in computer tools
Toudic method of Petri net invariants calculation was given. It was shown that Toudic algorithm
provides a set of basis solutions containing al invatiants' supports.
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