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Abstract

Paper gives a formal grounding of know heuristic Toudic method for the solution of linear
diophantine homogeneous systems of equations in nonnegative integer numbers. In
particular nonnegative solutions are required for calculation of the invariants for Petri nets.
At first we construct the solution for one equation. Then the solution is expanded to whole
system of equations. To generate all solutions via the Toudic’s basis a linear combination
was extended by special operation of reduction in common measure of vectors’
components.
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1. Introduction

The problem of the solution of linear diophantine homogeneous systems of equations arises in the
Petri net theory [3] during the process of net invariants calculation and also in other fields of computer
science. Invariants are powerful tools for investigation the major properties of the Petri net. Its allow to
determine boundness, safeness, necessary conditions of liveness and deadlock-free. These properties
are significant for real objects analysis [3] especially communication protocols, enterprise systems,
computer hardware and software.

It is known a heuristic method proposed by Toudic [1]. This method allows obtain nonnegative
integer solutions by the means of matrix transformations. Method was introduced without a formal
grounding. At start we have identity matrix that at finish contain the basis solutions. But the
completeness of the basis was not proved. Now do not looking at asymptotic exponential complexity
this method is widely used in enterprise Petri net analysis tools. This paper gives a formal grounding of
Toudic method.

It is wide known in the mathematics a lot of methods to calculate solution of the system of linear
equation in rational numbers. A variety of those include theoretical constructions based on calculation
of matrix determinants, classical Gauss method [4] and also special numerical methods introduced for
the minimization of computational error. 

If we consider an integer matrix of the system and calculate an integer solutions then a special
methods are required. This group of methods is based on unimodular transformations of matrix [6] to
obtain Smith normal form. It is known special
polynomial algorithms [2] used solutions in the classes field of deductions modulo of prime numbers
to construct a target general integer solution of the system.

In the Petri net theory the solutions of the state equation [3] are the transition firing count vectors
and have to be a nonnegative. Homogeneous systems are used for obtaining of the net invariants that
are a powerful tool for the structural properties of Petri net investigation [3].  It is the special problem
to construct a basis of nonnegative integer solutions of a system. In this paper this problem is solved
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for homogeneous system. To generate all solutions from Toudic’s basis we introduce a special
operation of vector reduction in common measure of components.

2. Solution of one equation

We start from the construction of solution for one equation. So we have
0=⋅−⋅ ybxa                     (1)

where ybxa ,,, are nonnegative integer vectors; dimension of xa ,  is m, dimension of yb ,  is n;

ba ,  are known coefficients; yx,  are unknown variables.

Theorem 1. An arbitrary solution of (1) may be represented as 
k
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In other words, rows of matrix G are basis solutions for each pair ),( ji ab . A formal description of

matrix G may be provided as following. Let us denote lg  l-th row of matrix G. Then nmlg l ×= ,1,
has such nonzero components as
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Proof. Thus, we have 
k
Gz

yx
⋅

=),( . Let us ),( dc  is an arbitrary solution of (1). We have to

prove that exists zk , so that

Gzdck ⋅=⋅ ),( (2)
We write more detailed representation of (2)









==⋅−⋅

==⋅−⋅

∑
∑

j
i

j
ij

i
j

j
ii

nikdza

mjkczb

,1,0

,1,0
(3)

The proof will be executed by a constructive approach. We suggest the concrete solution of the system
(3)
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Now we demonstrate that (4) is the solution of (3):

∑ ==⋅−⋅⋅=⋅⋅−⋅⋅=⋅⋅−⋅⋅
i

jjjjiji mjcadbccacdbccacdcb ,1,0)(

∑ ==⋅⋅−⋅⋅=⋅⋅−⋅⋅
j

iiiijj nicadcadcaddca ,1,0 .

So (4) is the solution of (3).  c

It is convenient to introduce a special operation for an arbitrary integer vector with nonnegative
components. This operation >< x  calculates the results of vector x  reduction in common measure of
components so if >=< xy  then a natural k such as xyk =⋅ exists.

Hence, solutions of (1) may be represented in the form
>⋅=< Gzx .

Theorem 2. Basis presented in Theorem 1 is a minimal.

Proof. Let us choose in the matrix G an arbitrary basis solution

)0,...,,...,0,0,...,,...,0( ji
j

i abg = (5)

Now we demonstrate that solution (5) can not be obtained from the residuary basis solutions (rows
of matrix G) by means of such operations as sum of vectors multiplied by a constants and by division
on integer. 

Really, any solution that has nonnegative component in the position j has also nonnegative
component in any position l, jl ≠ . And then we can not obtain zero in this position with the
operations of addition,  multiplication and division on nonnegative number.  c

So in this section was obtained a formal method for the solution of one equation. A basis consists
of nm ×  vectors represented by the matrix G.

3. Solution of a system of equations

Now we consider a system
0=⋅ Ax , (6)

where  A is a given integer nm ×  matrix, x  is an unknown nonnegative integer vector.
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We introduce the transformations of matrixes. We shall be obtaining a matrix D from the matrix A
with two elementary transformations:

1) Write line y into line v:
yv ll ←

2) Write the sum of lines y and z multiplied by a constants into line v:
z

z
y

y
v lclcl ⋅+⋅←

In such case the matrix D can be obtained from matrix A by means of multiplying from the left on
matrix of transformation R. Matrix R has such nonzero components:

I. For every transformation 1):
1, =yvr

II. For every transformation 2):

zzvyyv crcr == ,, ,
It may be easily proved if we consider the representation of D:

∑ ⋅=⋅=
k

jkkiji ardARD ,,,, .

Our method of system solution is similar to a Gauss method. It is based on the solution of one
equation and substitution of the obtained general solution into the residuary part of system. We process
until all equations will be solved and we will obtain so a zero matrix.

At first consider a solution of one (for example first) equation of (6). So we have equation

01 =⋅ ax
It may be easily constructed −+ III ,, 0  such sets of indexes as

}0|{},0|{},0|{ 1,1,
0

1, <===>= −+
iii aiIaiIaiI .

Further, according to Theorem 1 we construct a matrix of solutions with transformations I, II:

Rz
G

I

II

I
zx

I

II

I

⋅=−−−−−−−=
×

−−−−−−−⋅=
−+

)(

)(

)( 00

.

So 
>⋅=< Rzx or Rzxk ⋅=⋅ (7)

We multiply (6) by a natural number k and substitute (7) in (6)
0=⋅⋅ ARz

or
0=⋅ Dz , (8)

where ARD ⋅= . It has to be mentioned that solution of an equation adds new variables to the
system. 

Theorem 3. System (8), (7) is equivalent to the system (6).

Proof. Transformations above prove the necessary condition. It shall be proved the sufficient one.
We replace in (8) Rz ⋅  according to (7) and obtain

0=⋅⋅ Axk
So k is a natural, we divide above equation by k  and obtain (6).  c

Now we consider the process of the consecutive solution for equations of the system. 
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>⋅=< 11 Rzx
011 =⋅⋅ ARz

Continuing in such a manner we obtain

011 =⋅⋅⋅⋅⋅⋅ − ARRRz nnn

Let us denote
nzz =: , 11: RRRR nn ⋅⋅⋅⋅= −

then
0=⋅⋅ ARz , 0=⋅ AR ,

since at each step we reduce a one equation of the system. So we have
00 =⋅z .

Hence, an arbitrary vector z  is the solution of the system. The final solution of the system (6) may
by represented as 

>⋅=< Rzx  or Rzxk ⋅=⋅ . (11)
So according to Theorem 3 we used on each step the equivalent (reversible) transformations, we

have proved the following theorem.

Theorem 4. Expression (11) represents all the nonnegative integer solutions of system (6).

Hence it’s required find a matrix R  to solve the system. Matrix R  contains basis solutions. To
generate an arbitrary solution a linear combination and reduction in common measure of vectors’
components are used.

4. Description of the algorithm

Expression (11) may be written as
>⋅⋅=< ERzx ,

where E  is identity matrix. Then accounting the process of matrix R  construction we obtain

ERRRR nn ⋅⋅⋅⋅⋅= − 11 .
So to calculate matrix R  it is required to repeat all the transformations of the source matrix A

with the identity matrix E .
Hence, we come to Toudic’s [1] description of the algorithm.

Algorithm:
Step 0. Let us AD =: , ER =: .
Step 1. If 0=D then Stop. Matrix R  is the result matrix of basis solutions of system.
Step 2. If all the columns of matrix D  contain nonzero coefficients of the same sign then Stop.
System is inconsistent and has only trivial solution.

Step 3. Choose an arbitrary column j  of matrix D  with a minimal value of product −+ × II ,

where }0|{},0|{},0|{ ,,
0

, <===>= −+
jijiji aiIaiIaiI .

Step 4. Construct matrix D′  in such a manner: copy to matrix D′  rows 0I of matrix D  and then

write additional rows for each combination of −+ ∈∈ IrIkrk ,),,(  created as r
jk

k
jr lala ⋅+⋅ ,, .

Step 5. Execute the same transformations with matrix R  to construct matrix R′ .
Step 6. Assign RRDD ′=′= :,:  and goto Step 1.
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At Step 3 the column choice provides the minimal quantity of new solutions for corresponding
equation. According to previous results rows of the matrixes D  and R  may be divided together in a
common measure of components at any step of the algorithm.

Note that a peculiarity is in the manner of obtained basis R  usage to generate all the solutions. We
expand the linear combination with nonnegative integer coefficients with a new operation of reduction
in common measure of vectors’ components. So the operation of the division by natural number does
not produce new zero or nonzero components then additional operation of the reduction does not
influent on invariant supports’ obtaining. Note that support [1,3] is a set of nonzero components of the
solution.

5. Example consideration

It will be solved the following concrete system of equations to illustrate obtained results:









=⋅−⋅−⋅+⋅+⋅
=⋅−⋅−⋅−⋅
=⋅−⋅−⋅+⋅

052225
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02255
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xxxxx
xxxx
xxxx

              (12)

In the matrix form (6) we have

),,,,( 54321 xxxxxx = , 

T

A
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
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







−−
−−−

−−
=

52225
50552

02255
.

We write the pair of matrixes ),( RD :

10000
01000
00100
00010
00001

550
202

252
255
525

−−
−−

−−
−

The minimal value of 3=× −+ II  is obtained for the second column; it will be chosen as a

column j. So, we have 2=j  and calculate

20005
00205
00025
01000

15025
29021
29035

202 −−

Further the column 1=j  will be chosen

4250010
0214010
0350410

2000
1600
1200

−

−

After processing the column 3=j  we obtain
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64820800360
02034864280

000
000

And finally, reducing first and second rows by 4, we obtain basis solutions









=

1620520090
0203121670

R .

It is easily may be calculated that vector
( )2514220=b  

is the solution of the system (12) but it can not be obtained as a linear combination of basis solutions
with nonnegative coefficients. With the operation of reduction it may be represented as

8/)( 21 rrb += .
Analogously we may calculate

2/)3()8,407,28,24,150( 21 rr +⋅= ,

2/)3()24,409,36,8,170( 21 rr ⋅+= ,

16/)204()20,307,28,4,130( 21 rr ⋅+⋅= .

6. Conclusions

In present work a formal grounding for known as heuristic and widely used in computer tools
Toudic method of Petri net invariants calculation was given. It was shown that Toudic algorithm
provides a set of basis solutions containing all invatiants’ supports.
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