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Abstract 

The technique of solution of the fundamental equation of Petri net based on decomposition into 
functional subnets is proposed. Solutions of the fundamental equation of the entire Petri net are cal-
culated out of solutions of the fundamental equations of functional subnets for dual Petri net. Accel-
eration of computations obtained is exponential with the respect to dimension of Petri net. 
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1. INTRODUCTION 

Matrix methods [1,2,14] are the most prospective for large-scale real-life systems’ Petri net models 
analysis. The fundamental equation of Petri net constitutes a system of linear Diophantine equations 
[5]. Solutions of this system are interpreted as the firing count vectors for the allowed sequences of 
transitions and so have to be nonnegative integer numbers that stipulates the specifics of the task. 
Methods for these systems solution are represented in [3,4,6,9,13]. Unfortunately, all the known 
methods have an asymptotically exponential complexity that makes its application for real-life sys-
tems analysis difficult. 

The goal of the present work is the construction of the compositional methods for solution of 
fundamental equation of Petri net allowing the considerable acceleration of computations. Really, 
models of complex systems are assembled out of models of its components usually. Moreover, in 
the cases the composition of model out of subnets is not given, we suggest to apply the methods of 
Petri net decomposition represented in [8] to partition of a given Petri net into set of its functional 
subnets [7]. Earlier the analogous technique was applied successfully for invariants calculation 
[10,15]. 

The acceleration of computations obtained is estimated with an exponential function. Since the 
dimension of subnets as a rule is essentially little than the dimension of entire net, the actual accel-
eration of computations may be extremely considerable that was confirmed by the results of this 
technique application to communication protocols analysis [11,12,16]. 

 
 

2. BASIC CONCEPTS 

Petri net is a quadruple ),,,,( WFTPN =  where }{pP =  is a finite set of nodes named places, 
}{tT =  is a finite set of nodes named transitions; flow relation PTTPF ××⊆ U  defines a set of 

arcs connecting places and transitions, mapping Ν→FW :  defines a multiplicity of arcs; Ν  de-
notes a set of natural numbers.  

Marking of net is a mapping 0: Ν→Pµ , defining a distribution of dynamic elements named 
tokens over places; 0Ν  is a set of nonnegative integer numbers. Marked Petri net is a couple 

),( 0µNM =  or a quintuple ),,,,( 0µWFTPM = , where 0µ  is initial marking.  



 

A fundamental equation of Petri net [5] may be represented as follows 
 
 µ∆=⋅ Ax  (1)
 
, where 0µµµ −=∆ , x  is a firing count vector, A  is a transposed incidence matrix or incidence 
matrix of dual Petri net [5]. Notice that each equation of this system corresponds to a transition of 
dual Petri net. 

It is known [1,2,5] that the solvability of fundamental equation in nonnegative integer numbers 
is a necessary condition of the reachability of a given marking. Solutions of system (1) are used for 
the construction of the required firing sequences. 
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Fig. 1. Petri net 1N  Fig. 2. Dual Petri net 1
~N  

 
According to [3,4] we shall represent a general solution of homogeneous system as the linear 

combination of basis solutions with nonnegative integer coefficients. Notice that a basis consists of 
minimal in integer nonnegative lattice solutions of system. As distinct from classic theory of linear 
systems for representation of general nonnegative integer solution of nonhomogeneous system it is 
necessary to involve not one arbitrary but a set of minimal particular solutions. 
 
 
3. FUNCTIONAL SUBNETS 

Net with input and output places is Petri net the special subsets of places namely input and output 
are indicated in which.  

Functional net is a triple ),,,( YXNZ =  where N is Petri net, PX ⊆  is a set of input places, 
PY ⊆  is a set of output places, at that sets of input and output places do not intersect: ∅=YX I , 

and, moreover, input places do not have input arcs and output places do not have output arcs: 
∅=∈∀ •pXp : , ∅=∈∀ •pYp : . Places of set )(\ YXPQ U=  will be named an internal and 

places YXC U=  – a contact. 
Petri net ),,( FTPN ′′′=′  is a subnet of net N  if FFTTPP ⊆′⊆′⊆′ ,, . 
Functional net ),,( YXNZ ′=  will be named a functional subnet of net N and denoted as 
NZ f  if N ′  is subnet of N and, moreover, Z is connected with residuary part of net only by arcs 

incident to either input or output places, at that input places may have only input arcs and output 
places – only output arcs. Thus we have: 

∅=′∈∈∀ }\|),{(: TTttpXp ,  ∅=′∈∈∀ }\|),{(: TTtptYp , 
∅=′∈∧∅=′∈∈∀ }\|),{(}\|),{(: TTtptTTttpQ . 

Functional subnet NZ f′  is a minimal if it does not contain any other functional subnet of the 
source Petri net N. 



 

Net generated by the indicated set of transitions TR ⊆  will be denoted as )(RB .  
The decomposition into functional subnets [7] has been investigated in [8]. Invariants of func-

tional subnets were studied in [10,15]. Let us enumerate the most significant properties of func-
tional subnets: 
1) Functional subnet is generated by the set of its own transitions. 
2) Set of minimal functional subnets }{ jZ=ℑ , NZ j f  defines the partition of set T into nonin-

tersecting subsets jT , such that j

j
TT U= , ∅=kj TT I , kj ≠ . 

3) Each functional subnet Z ′  of an arbitrary Petri net N is the sum (union) of finite number of 
minimal functional subnets. Union of subnets may be defined with the aid of operation of con-
tact places fusion.  

4) Each contact place of decomposed Petri net has no more than one input minimal functional sub-
net and no more than one output minimal functional subnet. 

5) Petri net N  is invariant iff all its minimal functional subnets jZ , NZ j f  are invariant and 
there is a common nonzero invariant of contact places. 

 
 

4. FUNDAMENTAL EQUATIONS OF FUNCTIONAL SUBNETS 

Let us consider the structure of system (1): 
µ∆=⋅ Ax . 

Each equation iL : i
iAx µ∆=⋅ , where iA  denotes i-th column of matrix A , corresponds to 

transition it  (of dual net). Equation contains the terms for all the incident places. At that the coeffi-
cients are equals to weights of arcs and the terms for input places have sign minus and for output 
places – plus. 

Therefore the system (1) may be represented as 
 nLLLL ∧∧∧= ...21  (2)

Theorem 1. Solution x′  of fundamental equation for Petri net N  is the solution of fundamen-
tal equation for each of its functional subnets. 

Proof. As x′  is the solution of fundamental equation for Petri net N , so x ′  is a nonnegative 
integer solution of system (2) and consequently x′  is a nonnegative integer solution for each of 
equations iL . Thus x′  is a solution for an arbitrary subset }{ iL . 

According to property 1), a functional subnet Z ′ , NZ f′  is generated by the set of its own 
transitions T ′ . Thus, an equation corresponding to a transition of subnet has the same form iL  as 
for the entire net, so subnet contains all the incident places of source net. 

Therefore the system representing the fundamental equation for functional subnet Z ′ , NZ f′  
is a subset of set }{ iL  and vector x ′  is its solution. Consequently x ′  is the solution of fundamental 
equation for functional subnet Z ′ . Arbitrary choice of subnet NZ f′  in above reasoning proves the 
theorem.  

Theorem 2. Fundamental equation of Petri net is solvable if and only if it is solvable for each 
minimal functional subnet and a common solution for contact places exists.  

Proof. We shall use equivalent transformations of systems of equations to not prove separately 
necessary and sufficient conditions. According to property 2), a set of minimal functional subnets 

}{ jZ=ℑ , NZ j f  of an arbitrary Petri net N  defines a partition of set T  into nonintersecting sub-
sets jT . Let number of minimal functional subnets equals k . As it was mentioned in the proof of 
theorem 1, equations contain the terms for all the incident places. Therefore,  



 

 kLLLL ∧∧∧⇔ ...21 , (3)

where jL  is a subsystem for a minimal functional subnet jZ , NZ j f . Notice that if jL  has not so-
lutions, than L  has not solutions also.  

Let us a general solution for each functional subnet has the form  
 jjjj Guxx ⋅+′= , (4)

where jj Gu ⋅  is the general solution of homogeneous system, jj Xx ′∈′ , where jX ′  is the set of 
minimal particular solutions of nonhomogeneous system of equations. According to (3): 

kkk GuxGuxGuxxL ⋅+′==⋅+′=⋅+′=⇔ ...222111 . 
Therefore system  
 kkk GuxGuxGuxx ⋅+′==⋅+′=⋅+′= ...222111  (5)
is equivalent to source system of equations (1). We shall demonstrate further that the solution of 
system (5) requires essentially smaller quantity of equations. Let us consider a set of places of Petri 
net N  with the set of minimal functional subnets }|{ NZZ jj f : 

CQQQP k UUUU ...21= , 
where jQ  is a set of internal places of subnet jZ  and C  is a set of contact places. According to 
definition each internal place jQp∈  is incident only to transitions from set jT . Thus px  corre-

sponding to this place is contained only in system jL . Consequently, we have to solve only equa-
tions for contact places from set C . 

Now we construct equations for contact places of net Cp∈ , so only they are incident more 
than one subnet. According to property 4), each contact place Cp∈  is incident not more than two 
functional subnets. Therefore, we have equations  
 l

p
ll

p
j
p

jj
p GuxGux ⋅+′=⋅+′ , (6)

where lj,  is the numbers of minimal functional subnets incident to contact place Cp∈  and j
pG  is 

a column of matrix jG  corresponding to place p . Equation (6) may be represented in form  
j

p
l

p
l
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j xxGuGu ′−′=⋅−⋅ . 
Thus, system  
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(7)

is equivalent to source system (1). This fact completes the proof of theorem.  
Notice that in both cases described in proof according to (7), we have to solve a linear homo-

geneous system of equations.  
Corollary 1. To solve the fundamental equation of Petri net we may solve the fundamental 

equations of its minimal functional subnets and then to find a common solutions for contact places.  
Corollary 2. Theorem 2 is valid also for an arbitrary set of functional subnets defining a parti-

tion of the set of transition of Petri net.  
 
 
5. COMPOSITION OF FUNDAMENTAL EQUATIONS 

Taking into consideration the results obtained in the previous section we may formulate a composi-
tional method for solution of fundamental equation of Petri net:  
• Stage 0. Construct a dual Petri net. 
• Stage 1. Decompose dual Petri net into functional subnets.  



 

• Stage 2. Calculate solutions for each of functional subnets – find general solutions of nonho-
mogeneous systems of equations (4).  

• Stage 3. Compose subnets – find the common solution (6) for the set of contact places.  
Note that stages 2, 3 consist in solution of systems of linear nonhomogeneous Diophantine 

equations in nonnegative integer numbers. For this purpose the methods described in [3,4,6,9] may 
be applied. 

Let us extract out of system (7) equations for contact places  
jll

i
lj

i
j xxGuGu ′−′=⋅−⋅ . 

Or in the matrix form  

il
i

j
ilj b

G
Guu ′=
−

⋅ , jl
i xxb ′−′=′  

Let us enumerate all the variables ju  in such a way to obtain a united vector  
kuuuu ...21=  

and to assemble the matrixes j
iG ,  l

iG−  in a united matrix K . Then we obtain system  
 bKu ′=⋅ . 

System obtained has the form (1), consequently, its general solution has the form (4):  
 Jvuu ⋅+′= . (8)

Let us construct a united matrix G  of solutions (4) of system (1) for all the functional subnets in 
such a manner that  

 Guxx ⋅+′= . (9)
We substitute (8) in (9): 

( ) GJvGuxGJvuxx ⋅⋅+⋅′+′=⋅⋅+′+′= . 
Thus  

 Hvxx ⋅+′′= , Guxx ⋅′+′=′′ , GJH ⋅= . (10)
Since only equivalent transformations were involved, the reasoning represented above proves 

the following theorem. 
Theorem 3. Expressions (10) represent a general solution of fundamental equation (1).  
 
Now we estimate the total acceleration of calculations under the obtaining of invariants via de-

composition. Let r  be a maximal number either contact or internal places of subnets. Notice that 
nr ≤ . Then the complexity of fundamental equation solution for subnet may be estimated as r2~ , 

since the complexity of decomposition according to [8] is polynomial. 
Thus, the acceleration of computations is estimated as 

 rn
r

n −= 2
2

2 . (11)

Therefore, acceleration of computations obtained is exponential.  
Notice that the exponential acceleration of computations represented with expression (11) is 

valid also in the case the general solutions for the functional subnets have more than one minimal 
particular solution. Really, let each of minimal functional subnets has not more than n  minimal so-
lutions. Then during calculation of common solutions for contact places we ought to solve 2n  sys-
tems and polynomial multiplier may be omitted in the comparison estimations of exponential func-
tions.  

 
 



 

6. AN EXAMPLE OF FUNDAMENTAL EQUATION SOLUTION  

Let us check the reachability of marking )4,0,1,2,0(=µ  in Petri net 1N  (Fig. 1). Thus 
)4,1,1,2,1( −−=∆µ .  

 
Stages 0,1. Dual Petri net 1

~N  (Fig. 2) is decomposed into four minimal functional subnets 
4321 ,,, ZZZZ  completely defined by the subsets of its transitions: }{ 1
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}{ 5
3 tT = , }{ 4

4 tT = . 
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Stage 3. 
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Notice that the general solution of homogeneous equation constitutes t-invariant of Petri net. 

On the minimal solution )0,4,1,1,0,2(=′x  we may construct the friable sequence 51435551 tttttttt=σ . 
Therefore, marking )4,0,1,2,0(=µ  is reachable in net 1N . 

In this tiny example all the places are contact, so we have not obtained an acceleration of com-
putations. For real-life examples the accelerations may become rather considerable [11,12,16]. 

 
 

7. CONCLUSION  

The complexity of Petri net fundamental equation solution is exponential in general case. This fact 
makes the analysis of real-life objects difficult. The technique proposed and studied in present paper 
allows the acceleration of the solution of fundamental equation. This technique is based on the de-
composition of Petri net into functional subnets. The acceleration obtained is exponential with re-
spect to the number of nodes of source Petri net.  
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