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ABSTRACT 
 
A technique of the linear invariants calculation for infinite 
Petri nets with the regular structure is presented and studied 
on the example of square communication grids of an 
arbitrary size. It is proven that the compulsory buffering of 
the packets inevitably leads to possible blockings of 
communicating devices. The structure of complex 
deadlocks involving an arbitrary number of communicating 
devices caused by both the cycle of blockings and the 
isolation is studied. ∗ 

 
INTRODUCTION 
 
The Petri net application for the verification of 
telecommunication protocols is a rather traditional direction 
of research (Berthelot and Terrat 1982; Diaz 1982). The 
majority of known works study communication processes 
in pairs of communicating devices. But anomalies may 
occur which involve an arbitrary number of communicating 
devices and the present paper proves this statement. As the 
number of communicating devices and the structure of the 
network are considerably varied for real-life networks, a 
technique is required that could manage an arbitrary 
number of devices constituting an arbitrary structure. 
Recently the parametric composition of functional Petri 
nets (Zaitsev 2005) was applied (Zaitsev and Zaitsev 2006) 
for the analysis of infinite linear structures of 
communicating devices (Marsan, A.M.; Chiola, G. and 
Fumagalli, A. 1987). A simpler direct approach (Shmeleva 
2007) was applied for treelike infinite structures. The 
present work is restricted to the square communication grid 
(matrix) infinite structure of communicating devices but it 
seems that the obtained results might be generalized for an 
arbitrary structure as well. 
 
THE MODELS CONSTRUCTION 
 
For the composition of infinite communication structures, 
submodels of a typical communication device and a 
terminal device are required. Further we compose such a 
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regular communication structure as a square matrix of 
communicating devices of an arbitrary size. 
 
The Model of a Communication Device 
 
Let us consider such real-life communication devices as 
switches and routers, for instance, Ethernet switches and 
IP/MPLS routers. Their basic function (Russell 2004) is the 
redirection of the arrived packets to the destination port. So 
the model of a communication device consists of ports 
models. Usually each port works in the full-duplex mode 
that allows simultaneous transmission in both directions. 
This is provided by the different channels of the port: the 
input channel and the output channel. A channel of a port 
has its internal buffer for the allocation of one packet. 
Moreover, the communication device uses an internal 
buffer with the limited capacity where it stores the packets 
before they are put into the destination port. The usage of 
the switching and routing tables is not modeled but the 
redirection function is represented by the allocation of the 
arrived packet for each possible destination. This abstract 
description suits the routers operation with the compulsory 
buffering of the packets and without the cut-through 
possibilities (Russell 2004). 
 
The constructed model of a communication device is 
represented in Fig. 1a. It has four ports for the further 
composition of the communication matrix but it might be 
constructed with an arbitrary number of ports as well. All 
the ports are situated on the sides of a square and are 
numbered clock-wise from 1 (the upper side) to 4 (the left 
side). A port consists of two channels: input (i) and output 
(o). Each channel is represented by a pair of places: one for 
the packet allocation and the other for modeling the port 
buffer capacity which is equal to 1. For instance, port 1 is 
modeled by the following places: ip1  - input buffer; ilp1  - 
limitation of the input buffer capacity (equal to 1); op1  - 
output buffer; olp1  - limitation of the output buffer 
capacity (equal to 1). The internal buffer of the 
communication device is modeled by the separate places 
where the packets with the corresponding destinations are 
allocated: 1pb , 2pb , 3pb , 4pb . For instance, place 1pb  
stores the packets redirected to port 1. Moreover, the 
capacity of the internal buffer is modeled by place pbl . 
The operation of the port output channel is represented by 
the only transition ot * , for instance, ot1  for port 1. The 
transition checks the availability of the port buffer olp1 , 
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gets a packet from the corresponding place 1pb , puts the 
packet into the port output buffer op1  and increases the 
capacity of the internal buffer pbl . The operation of the 
port input channel is more sophisticated because it models 
the process of the destination choice. For each port it is 
modeled by three transitions (3=4-1). For instance, 21it , 

31it , 41it  for port 1. Transition 21it  allocates the packets 
redirected from port 1 to port 2 into the internal buffer place 

2pb  and so on.  
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Figures 1: Model of square grid communication structure 

 

Notice that the constructed model constitutes a definite 
balance between the complexity of real-life devices and the 
possibilities for formal analysis. At least, the essential 
features (Russell 2004) are modeled: redirection of the 
packets and their intermediate allocation into the internal 
buffer with the limited capacity.  
 
The Model of a Communication Structure  
 
The matrix (two dimensions) structure of communication 
devices is studied in the present paper. As the real-life 
communication structure may consist of an arbitrary 
number of communication devices, special methods should 
be developed that handle the infinite number of 
communication devices. Furthermore, it will be shown that 
the communication structure brings us anomalies which can 
not be found during the traditional study of communication 
processes in pairs of devices (Berthelot and Terrat 1982; 
Diaz 1982). The results are obtained for the regular 
structures such as the matrix but it seems they might be 
generalized on arbitrary structures. 
 
Notice that the constructed model n2s1 is a functional Petri 
net (Zaitsev 2005). Let us construct a communication 
structure via the composition of communication device 
models situated in the cells of a matrix. Square matrices of 
the size k  are studied, where k  is an arbitrary natural 
number. So each device jiR ,  in the matrix is defined by 
two indices: i  – for vertical direction and j  – for 

horizontal, ki ,1= , kj ,1= . The matrix communication 
structure is represented in Fig. 1b.  
 
The connection of communication devices is provided by 
the fusion (union) of corresponding contact places. For 
instance, for an internal communication device jiR , , 

1,2 −= ki , 1,2 −= kj , the places of port 1 are fused with 

the corresponding places of port 3 for the device jiR ,1−  in 
such a way that place ji

op ,
1  is fused with ji

ip ,1
3
− , place ji

olp ,
1  

– with ji
ilp ,1

3
− , place ji

ip ,
1  – with ji

op ,1
3
− , place ji

ilp ,
1  – with 

ji
olp ,1

3
− . So the full-duplex mode of communication via two 

channels of the ports is modeled. The rules of device jiR ,  
connection may be formulated in the following way: the 
upper side – port 1 to port 3, device ),1( ji − ; the right side 
– port 2 to port 4, device )1,( +ji ; the bottom side – port 3 
to port 1, device ),1( ji + ; the left side – port 4 to port 1, 
device )1,( −ji . After the composition, the contact places 
have duplicate names. To avoid duplicity, the names of the 
places for the ports 1, 4 (the upper and left sides) will be 
considered with respect to the current device, for the ports 
2, 3 – with respect to the neighbor devices and their ports 1, 
4 correspondingly.  So the names of the fusion places have 
only the prefixes of the ports 1, 4. Moreover, to simplify 
further notations, the places of the right and bottom borders 
of the matrix are named with respect to non existing 
devices with the indices equaling to 1+k . So the numbers 



 

of the ports 2 and 3 do not appear in the matrix. An 
example of the communication matrix (with attached 
terminal devices) for 2=k  is represented in Fig. 3. 
 
The Models of Terminal Devices 
 
The communication devices may be attached to each other 
constituting a communication structure but they are created 
only for the packets transmission among the terminal 
devices: workstations and servers. In the present work, the 
client-server technique of interconnection is not studied, so 
the types of terminal devices are not distinguished as in 
(Zaitsev and Shmeleva 2006.). An abstract terminal device 
provides at least two basic functions: send packet and 
receive packet. These basic functions are provided by the 
models represented in Fig. 2.  
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a) a simple reflection of 

packets (n0f) 
b) with the buffer of the 

packets (nf) 
Figures 2: Petri net models of a terminal device 

 
The Fig. 2a gives the simplest model that only reflects the 
arrived packets from the input to the output via transition 

utf − ; names of the places are given with respect to the 
places of a communication device port. So the model of a 
terminal device may be attached by the fusion of the places 
with the same names. The model in Fig. 2b contains an 
internal buffer of the packets upf − ; transition utfi −  
models the input of the packets, while transition utfo −  
models the output. The suffix u−  means the upper row of 
terminal devices that supposes port 1 for attachment; the 
left, right and bottom (down) rows contains the suffices l− , 

r− , d−  correspondingly. An example of the 
communication matrix with attached terminal devices (type 
a) is represented in Fig. 3. 

 
CALCULATING P-INVARIANTS 
 
The described composition of the model allows the 
application of the technique for Petri net analysis via the 
composition of its functional subnets (Zaitsev 2005). This 
approach was applied for the Ethernet protocols with the 
bus structure verification for an arbitrary number of devices 
on the bus (line structure) (Zaitsev and Zaitsev 2006). But it 
brings us the explosion of solutions basis for the 
composition system and hinders the application of this 
technique.  A rather simple technique of the direct 
construction of an infinite linear system for p- and t-
invariants applied for the switched Ethernet protocols 
verification (binary tree structure) (Shmeleva 2007) seems 
more adequate. 
 
The following infinite linear system of equation is 
constructed for p-invariants calculation of Petri net n2sk 

(Fig. 1b) – the matrix of k  devices n2s1 (Fig. 1a), where k  
is an arbitrary natural number: 
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(1) 

 
Notice that the standard technique of invariants calculation 
(Murata 1989) is applied directly to the infinite Petri net. In 
the system for p-invariants calculation each equation 
corresponds to a transition; the sums of variables for the 
input and output places are equal. It is easy to check that 
each transition of the net n2dk was considered in the system 
(1). 
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Figures 3: Petri net model of a grid with attached terminal 

devices for 2=k (nf2s2) 



 

The first 4 equations correspond to the transitions of ports 
1, the next 4 – to the transitions of ports 4. They use 
variables of the places with the indices of the current device 

),( ji , according to the naming rules. The next 4 equations 
describe the transitions of ports 2; the last 4 equations – the 
transitions of ports 3. They use the variables of ports 1, 4 
places with the indices of the neighbor device ),1( ji + , 

)1,( +ji  correspondingly, instead of ports 3, 2 places with 
the indices of the current device ),( ji , according to the 
naming rules. Let us count the number of the equations and 
variables in the system (1). The total number of equations 
(transitions): 22 16 kN tn

k ⋅= . The total number of variables 

(places): kkN pn
k ⋅+⋅= 813 22 . 

 
The universal methods for the infinite systems of the linear 
equations under the rings (integer numbers) solving, 
especially into semigroups (nonnegative integer numbers) 
are unknown. We applied a heuristic method of a general 
solution construction in the parametric form. The general 
solution of the system (1) may be represented as: 
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The way of the solutions description is common enough for 
sparse vectors and especially for the Petri net theory. Only 
nonzero components are mentioned by the name of a 
corresponding place. The nonzero multiplier 1 is omitted; in 
case it is not the unit, the notation xp*  is used where x  is 
the value of the invariant for place p . Such notation is 
adopted in the Tina software (Berthomieu et el.  2004) 
which was used for obtaining the Petri net figures in this 
paper. A line of the matrix (2) gives us a set of lines 
according to the used indices i  and j  except the last two 
lines which contain variable number of components given 
by indices. The total number of solutions is 

245 22 +⋅+⋅= kkN pinvn
k . 

 
We did not manage to prove that the matrix (2) is the basis 
of nonzero solutions of the system (1) but it is possible to 
ground that each line of (2) is a solution of (1). And this 
fact allows the proof of p-invariance for the net n2sk.  
 
Lemma 1. Each line of the matrix (2) is a solution of the 
system (1). 
Proof. Let us substitute each parametric line of (2) into 
each parametric equation of the system (1). It gives us the 

correct statement. For instance, let us substitute the first line 
of (2) 
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We obtain: 

- when ii ≠′  or jj ≠′ : 0+0=0+0 and 
further 0=0; 

- when ii =′  and jj =′ : 1+0=1+0 and 
further 1=1. 
In the same way all the 16x7 combinations may be checked. 

 
 
Theorem 1. The net n2sk is a p-invariant Petri net for an 
arbitrary natural number k . 
Proof. Let us consider the sum of the sixth and seventh 
lines of the matrix (2) which represents the solutions of the 
system (1) according to Lemma 1: 
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As all the kkN pn

k ⋅+⋅= 813 22  places are mentioned in this 
invariant, the Petri net n2sk is a p-invariant net for an 
arbitrary natural number k . Moreover, as each component 
of (3) equals to the unit, the net n2sk is a safe and bounded 
Petri net for an arbitrary natural number k .  
 
As the p-invariance was proven for an arbitrary natural 
number k  we say that the invariants of infinite Petri nets 
with the regular structure were studied.  
 
The proof that (2) is a basis of the system (1) solutions is 
appreciated. But this fact was only grounded by the 
calculation experiments for the sequence 10,..,1=k . 
Solutions given by (2) were compared with the basis 
obtained via the Adriana software (Zaitsev 2006) for the 
matrix structure with definite k .  

 
T-INVARIANTS AND DEADLOCKS STRUCTURE 
 
For the calculation of t-invariants the same approach may 
be applied. It gains that the Petri net n2sk is not t-invariant, 
but it is not a surprise because the modeled system is open 
as the terminal devices are not attached. The simplest way 
to prove it, is the consideration of the border places without 



 

the input arcs (places without the output arcs as well). So 
let us consider the net nf2sk which is obtained of the net 
n2sk by attaching the terminal devices nf represented in Fig. 
2b.  
 
But due to the explosion of the basis even for a small 
enough 3=k , the general parametric solution was not 
constructed. This fact may be easily grounded by the 
consideration of all the consistent firing sequences of 
transitions. At first we prove that the net nf2sk is t-
invariant. For this purpose the consistent firing sequence 
that contains all the transitions is constructed. We create a 
transmission graph of the communication matrix. The graph 
is composed of the cells corresponding to the devices. The 
cells have the form shown in Fig. 4. 
 
Each arc of the graph corresponds to firing a pair of 
transitions supplying the movement of a packet to the 
corresponding port. For instance, the arc )4,1( opip  
represents the sequence otit 4,41  and so on. For the graph 
shown in Fig. 4b the following loop may be constructed, 
which contains all the arcs: 
 
p1i, p2o, p2i, p4o, p4i, p3o, p3i, p1o, p1i, p4o, p4i, p2o, 
p2i, p3o, p3i, p4o, p4i, p1o, p1i, p3o, p3i, p2o, p2i, p1o 
 
This loop corresponds to the following firing sequence of 
transitions 

 
t1i2, t2o, tfi-r, tfo-r, t2i4, t4o, tfi-l, tfo-l, t4i3, t3o, 

tfi-d, tfo-d, t3i1, t1o, tfi-u, tfo-u, t1i4, t4o, tfi-l, tfo-l, 
t4i2, t2o, tfi-r, tfo-r, t2i3, t3o, tfi-d, tfo-d, t3i4, t4o, 

tfi-l, tfo-l ,t4i1, t1o, tfi-u, tfo-u, t1i3, t3o, tfi-d, tfo-d, 
t3i2, t2o, tfi-r, tfo-r, t2i1, t1o, tfi-u, tfo-u, 

 
which contains each transition at least once. So the net 
nf2s1 is a t-invariant and, moreover, consistent Petri net. 
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a) without terminal devices 

(n2s1) 
b) with attached terminal 

devices (nf2s1) 
Figures 4: The transmission graph of a 

communication device 
 
The cells are gathered into the matrix and supplied with the 
arcs which correspond to the actions of terminal devices for 
the net nf2sk. An example of the graph for 2=k  is 
represented in Fig. 5a. 
 
Theorem 2. The net nf2sk is a t-invariant Petri net for an 
arbitrary natural number k . 

Proof. We prove the theorem in a constructive way using 
the structure of the transmission graph for the net nf2sk. We 
construct the consistent firing sequence that contains all the 
transitions of the net on the base of the loop of the 
transmission graph which contains all its arcs. Let us 
construct the main loop as the composition of loops on the 
following directions: horizontal, vertical, primary diagonal, 
collateral diagonal: 

1) horizontal loops: 
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3) primary diagonal loops: 

3.1) left-bottom triangle: 
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3.2) right-upper triangle: 
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4) collateral diagonal loops: 

4.1) left-upper triangle: 
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4.2) right-bottom triangle: 
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On the described loops, firing sequences of transitions may 
be unambiguously constructed. For instance, the loops for 
the right-bottom triangle have the following form: 
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It is easy to check that the sum of all the firing sequences 
corresponding to the described loops contains each 
transition of the net nf2sk at least once and preserves the 
initial marking. So the net nf2sk is a t-invariant and, 
moreover, consistent Petri net for an arbitrary natural 
number k .  
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a) The transmission graph 

 
 

 

 
 

b) The graph of possible blockings 
 

Figures 5: Auxiliary graphs (examples for the net nf2sk) 
 

In spite of the fact that the Petri net nf2sk is t-invariant and 
provides the transmission of packets among each pair of 
terminal devices with redundancy, it contains deadlocks. 
Deadlocks may occur in the pairs of communication 
devices but we are more interested in complex deadlocks 
involving an arbitrary number of communication devices.  
 
Each pair of neighbor communication devices may fall into 
a local deadlock, for instance, when the device jiR ,  got l  
packets directed to the device 1, +jiR  and the device 1, +jiR  
got l  packets directed to the device jiR ,  and, moreover, 
the input and output buffers of their common port are 
occupied with the packets. Such a situation constitutes a t-
dead marking for the transitions of both devices while other 
transitions of the net nf2sk are potentially live.  
 
In Fig. 3 the full deadlock for the net nf2s2 is shown. It 
involves all the four communication devices of the matrix.  
 
For the description of the deadlocks structures of the net 
nf2sk, the graph of possible blockings shown in Fig. 5b is 
constructed.  
 
The directed loops of the graph (Fig. 5b) correspond to the 
deadlocks of the communication matrix nf2sk. Each arc 
connecting a pair of neighbor devices jiR , , jiR ′′, , 

11 =′−∨=′− jjii  means that jiR ,  may block itself iff it 

got l  packets directed to jiR ′′, , its output buffer of the port 
connecting jiR ,  with jiR ′′,  contains a packet and the 
device jiR ′′,  is also blocked. We may construct a simple 
chain of arcs and the real deadlock occurs when it is closed 
in a loop. So deadlocks of the communication matrix may 
be described as loops of the graph of possible deadlocks. A 
full deadlock involving all the devices (and all the 
transitions) occurs when the loop contains all the devices in 
the matrix. Let us notice that it requires at least 2)1( kl ⋅+  
packets which should be provided by the terminal devices. 
Such a deadlock may be easily constructed for an even k  
using, for instance, the detours of the graph shown in Fig. 
6a. 

 

  
a) For an even k  b) For odd 7=k  

Figures 6: The detours of the graphs of possible blockings 
 

For an odd k , the loop may contain only 12 −k  devices but 
in this case we could make one device isolated by the loop 
that yields to the full deadlock. So the structure of the 



 

deadlocks is more complicated because, besides the 
deadlock caused by a cycle of blockings, isolated 
communication devices may occur with all the four 
neighbors belonging to the cycle. This case is rather simple 
for 3=k  and illustrated with a full deadlock instance for 

7=k  shown in Fig. 6b. 
 
In spite of the fact that rather sophisticated square 
communication matrices were studied, the described 
deadlocks in the cycles of blockings and isolations are hard-
nosed for real-life communication graphs where devices 
with the compulsory buffering are used. We believe that 
these deadlocks may be purposely inflicted by the specially 
situated generators of the peculiar traffic. In real-life 
networks, the blocking of the devices is overcome with the 
time-out mechanisms causing the cleaning of the buffers 
but it leads to a considerable fall of network performance as 
soon as the situation is repeated by the special generators of 
perilous traffic. 
 
CONCLUSIONS 
 
Thus, in the present paper, the technique of the linear 
invariants calculation for infinite Petri nets with the regular 
structure was presented. The technique was studied on the 
example of a communication matrix of an arbitrary size but 
it seems that the obtained results might be generalized for 
an arbitrary structure as well. 
 
The application of the technique allowed the verification of 
the telecommunication protocols, involving an arbitrary 
number of communicating devices. The modeled 
telecommunication device constitutes a generalized 
router/switch with the compulsory buffering of the packets. 
Such positive properties of the communication structure as 
safeness and consistency were obtained using the linear 
invariants of infinite Petri nets. 
 
It was proven that the compulsory buffering of the packets 
inevitably leads to possible blockings of communicating 
devices. The structure of the complex deadlocks involving 
an arbitrary number of communicating devices caused by 
both the cycle of blockings and the isolation was studied.  
 
Though in real-life networks the deadlocks are overcome 
by the cleaning of the buffers via the time-out mechanism, 
it leads to a considerable decrease of the network 
performance and moreover might be inflicted by the ill-
intentioned traffic. 
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