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Abstract. Partial differential equations and systems with certain boundary conditions 

specify continuous processes significant for both large-scale simulations in computer-

aided design using HPC and subsequent real-time control of embedded applications using 

dedicated hardware. The paper develops a spectrum of techniques based on a family of 

place-transition nets aimed at the computing and communication structure design for fast 

mass-parallel numerical solving of PDEs. For the HPC domain, we develop models of 

interconnects in the form of infinite nets and graphical programs in the form of Sleptsov 

nets. For the embedded control domain, we develop specialized lattices for fast numerical 

solving PDE based on integer number approximation specified with Sleptsov-Salwicki 

nets to be implemented on dedicated hardware, which we prototype on FPGAs. For 

mass-parallel solving of PDEs, we employ ad-hoc finite-difference schemes and iteration 

methods that allow us to recalculate the lattice values in a single time cycle suitable for 

control of hypersonic objects and thermonuclear reactions. 

Keywords: Partial-differential equation, finite difference, iteration, computing lattice, 

mass-parallel solution, embedded control, FPGA 

 

1 Introduction  

Solving a Partial Differential Equation (PDE) [1-3] represents the basic technique of 

continuous system modeling in a wide range of practical applications. Some specific forms of 

PDEs allow us to obtain analytical solutions, which simplify the process of their application. 

In the general case, a given equation is resolved numerically; either finite difference or finite 

element techniques are applied. A Computer Aided Design (CAD) [4] represents the basic 

application area. For big, realistic tasks, high-performance computing (HPC) [5] resources 

are involved. We take this HPC domain into consideration, focusing also on specific 

requirements and techniques for fast solving of PDEs for control purposes in embedded 

applications [6]. For example, control of airplane engine turbines based on resolving gas 

dynamics and thermodynamics problems, control of hypersonic vehicle trajectories, etc.  

For these applications, iteration methods [2] yield the utmost performance, allowing us to 

apply directly a mass-parallel computing approach. When solving PDE numerically, via the 

iteration technique, based on the finite difference approximation [1-3] to achieve maximal 

performance, a computing structure should be ―isomorphic‖ to the task space. Thus, a 
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multidimensional lattice of computing nodes is the most suitable structure. In this paper, we 

distinguish between general-purpose computing lattices and specialized structures to solve 

fast a single class of PDE appropriate for a chosen embedded application. We apply a 

general-purpose computing lattice with definite spatial structure, inspired by the Tofu D 

interconnect approach [7], which connects nodes of Fugaku [8] supercomputer using a 6D 

torus. The choice is motivated by the fact that Fugaku represents the most efficient 

supercomputer [9]. In essence, Fugaku embodies an early approach to specialized 

supercomputer design dedicated to resolving quantum physics tasks [10]. For embedded 

applications, we offer an approach that implements a specialized hardware lattice on FPGA 

[11] via generating the corresponding Verilog [12] code. 

For specification of computing and communication lattices, we use a family of languages 

based on Sleptsov nets [13] and their extensions with infinite [14,15] and loaded (colored) 

[16,17] nets and a special class of reenterable models [18] which represents an abstraction 

convenient for lattice specification prior to Verilog code synthesis.  

We model an HPC interconnect as a multidimensional cube of nodes [19] using real-life 

boundary conditions [20] to specify the packet delivery between customer (terminal) devices 

connected to the boundary of the communication matrix; otherwise, we close (connect) the 

opposite bounds to obtain the torus surface of computing-communication nodes. We study 

such basic principles of packet switching as (a) store-and-forward, (b) cut-through, and (c) 

combined. Such well-known formalisms of mathematical modeling as cellular automata 

[21,22] and Petri nets have close intrinsic relations, especially Petri nets with a regular spatial 

structure, for instance, square. We apply an early-introduced formalism of infinite Petri nets 

[14,15] for specifying communication lattice models composed in the present paper. 

For embedded applications, we considerably simplify computing-communication structure 

based on integer number approximation converging with cellular automata techniques for 

dedicated hardware implementation in the form of a computing lattice, which we prototype 

on FPGA [11]. Obtained for FPGA benchmarks acknowledge the applicability of the 

approach for fast control based on the ongoing process of numerically solving boundary 

problems for PDE, where the boundary is actually mapped into sensors and actuators.  

In Section 2, we study the iteration techniques for the finite difference method of solving 

PDE and focus on a stencil with Moore’s neighborhood that yields good convergence with a 

fourth degree of accuracy with respect to the mesh step. In Section 3, we study computational 

aspects of the node work and specify the node software by a graphical concurrent Sleptsov 

net program using colored nets. In Section 4, we study packet switching communication 

lattices with Moore’s neighborhood and modern switching techniques, specifying them by 

infinite Petri nets, reducing tasks of their analysis to solving infinite Diophantine systems of 

equations. In Section 5, we focus on the peculiarities of dedicated computing-communication 

lattice design for embedded applications composing reenterable colored net models as an 

abstract specification. Then we generate Verilog code for prototyping specialized lattices, 

which solve PDE on FPGA, based on their specification by the plain Sleptsov-Salwicki nets. 

Obtained benchmarks prove fast convergence and high accuracy of the chosen finite 

difference scheme, acknowledging a rather good integer approximation for embedded 

applications.   
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2 Iteration Finite Difference Method for Solving PDE 

Partial differential equations are widely used to describe physical phenomena in such 

domains as mechanics, hydrodynamics, acoustics, heat transfer, electricity, magnetism, and 

others. In most cases, it is impossible to find analytically the solution of these equations. 

Therefore, numerical methods, in particular, the finite difference method, have become 

widespread for their solution [1-3]. 

In the finite difference method, the original partial derivative equation is reduced to a 

system of difference equations, for the solution of which, direct and iterative methods are 

applied. Often, this is the only way to find the solution of partial derivative equations. 

The essence of the finite difference method is to solve difference equations that are 

obtained from the original partial derivative equation by replacing the partial derivatives by 

their difference analogs with a greater or lesser degree of accuracy. 

For example, applying the finite difference method, the Laplace equation 

 

        

   
 

        

   
   

 

can be replaced by the following difference relation 

 
                         

  
 

                         

  
    

 

where     is the discretization step. 

With this substitution, we arrive at an equation that relates the values of the desired 

function at separately taken points, which are usually chosen so that they form a square mesh. 

Let us consider different ways of approximating partial derivatives and their corresponding 

patterns, which are most often encountered in solving problems of mathematical physics. We 

construct the difference approximations for the case of a function of two independent 

variables        on a rectangular mesh. Without restricting the generality, we will assume 

that the change area of the argument   is the segment      , and the change area of the 

argument   is the segment      . Let us divide the segments      ,       by 

points                    ,                     into N equal parts of length 

  
 

 
 each. The set of points         with coordinates                    and    

                 is called a mesh in the square      ,      . By      we denote 

the value of function u at the points with coordinates               (     )  

Let us give some difference analogs of partial derivatives, which are used when applying 

the finite difference method. The following finite-difference approximations can be found in 

textbooks [1-3].  Fig. 1 shows stencils corresponding to the given difference operators. 
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  error order       (Fig. 1b). 
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, error order       (Fig. 1c). 
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 error order       (Fig. 1b). 
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    error order       (Fig. 1d). 
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error order       (Fig. 1e). 
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    error order       (Fig. 1f). 
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error order       (Fig. 1e). 
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    error order       (Fig. 1b). 
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error order       (Fig. 1e). 

Fig. 1 shows that the difference analogs 6, 8, and 10 form a Moore neighborhood [21,23]. 

Thus, the Moore neighborhood arises in the difference approximation of partial derivative 

equations containing derivatives of order 2 and 4. As an example of the application of the 

approximation leading to the Moore neighborhood, consider the Dirichlet problem for the 

Laplace equation. 

We will solve the following problem: we need to find a function of two variables u(x,y), 

satisfying in the domain D={0<x<1,0<y<1} to the Laplace equation 

 

1.  
        

    
        

        (1) 

and taking on the boundary    of the domain D given values: 

 

2.   |             (2) 

 

where        is a given function. 
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Fig. 1. Interior stencils for the finite difference method on a plane. 

In domain D, we construct a mesh with step h, as described earlier. In [2], the following 

difference scheme is constructed to approximate the Laplace equation of 4th accuracy level 
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Here N is the number of partition points along the x and y directions. 

The value of the sought function at the boundary nodes is determined from condition (2) 
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We will use the method of simple iteration to solve the system of grid equations (3)-(7).  

Let's set the initial approximation     
   

. For internal points of the domain D, we choose the 

initial approximation arbitrarily; at the boundary, the initial approximation is determined by 

expressions (4)-(7). The next approximation is determined by the formula 
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where s is the iteration number s=0, 1, 2, …,                          
The calculations continue until the condition (9) is satisfied. 
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In [2], it was shown that the solution of a problem (3)-(7) converges to the solution of a 

problem (1)-(2) at the rate of      . It follows from the results of [2] that the iterative 

process (8)-(9) converges at any initial approximation. Since the connection between   and   

is rather sophisticated, we represent it in a simplified algorithm-like form. Given an accuracy 

of approximation  , we compute the mesh step as   √ 
 

  and the mesh size as   ⌊   ⌋, 
and run the iteration process (8)-(9) for initial values coinciding with some boundary value.  

To perform the numerical experiment using the difference scheme (3)-(7), the solution of 

the temperature field distribution problem in a bar of square cross-section with unit length 

sides was found, assuming that the distribution along its faces is known. The solution of the 

system of linear equations (3)-(7) was found by the method of simple iteration (8)-(9). The 

problem was to find the solution of equation (1) in a square with sides of unit length and the 

following boundary conditions: 
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The results of calculations are shown in Fig. 2, from where it can be concluded that the 

steady-state temperature distribution inside the bar takes values between the minimum and 

maximum temperature values at the boundary, which agrees with the maximum principle 

satisfied by the solution of Laplace's equation. 

 
Fig. 2. The surface plot of the temperature distribution inside the beam cross-section. 

 

This algorithm is simple to parallelize. If there is a sufficient number of processors, each 

iteration can be performed in one step, which will significantly increase the speed of finding a 

solution to the problem. 

The solution of boundary value problems for the Laplace equation is of great practical 

importance. The problems of finding a stationary thermal field are reduced to the solution of 

this problem. For example, a constant temperature regime is given on the boundary of a 

domain, and it is necessary to find the temperature distribution inside the region. Likewise, 

the problems of finding the electric field potential and electrostatic field potential of the 

stationary current are reduced to the solution of the boundary value problem for the Laplace 

equation. 

Let us consider some papers devoted to the solution of the Dirichlet problem for the 

Laplace equation. In [24], the distribution of electric potential in the region of interest was 

found by solving the Dirichlet problem for the Laplace equation with a given potential on the 

boundary. The authors of [24] conducted a comparative analysis of three iterative methods 

that were used to solve the corresponding difference problem: the Jacobi, the Gauss-Seidel, 

and Successive Over Relaxation (SOR) methods. It is shown that the SOR method is the most 
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efficient in terms of convergence rate. In [25], three methods were used to solve the Dirichlet 

problem for the Laplace equation: the finite difference method (FDM), the finite element 

method (FEM), and the Markov chain method (MoM).  The obtained results were compared 

with the exact solution to verify the accuracy of the methods used. An accuracy investigation 

of three methods—the finite difference method (FDM), the finite element method (FEM), and 

the method of moments (MoM) to solve the Dirichlet problem for the Laplace equation—was 

conducted in [26]; advantages and disadvantages of these methods have been discussed. 

 

3 Model of Computations within a Node 

In this section, we develop a model of computations, which are implemented within a 

combined communication and computing node. In Section 4, we develop a model of 

communication lattice implemented in the hardware form of connected nodes based on a 

certain type of interconnect [7,27], which allows us to organize information exchange 

according to a given pattern of nodes interconnection in a specific finite difference scheme 

(stencil). 

A bipartite graph, Gill [28] was using for modeling parallel computations, has been 

supplied by Carl Petri [29] with dynamic elements, called tokens, situated within vertices of 

the graph's first part, called places, and depicted as circles or ovals. Vertices of the second 

part, called transitions, and depicted as squares or rectangles, fire, consuming tokens from 

their input places and producing tokens within their output places. The discrete time process 

of firing transitions represents the Petri net (PN) behavior. Conventionally, finite sets of 

places and transitions have been considered [30]. A Petri net [30] represents a special case of 

a Sleptsov net (SN) [13] where a transition fires in multiple instances at a step. Sleptsov Net 

Computing (SNC) [31-33] resolves many problems of modern HPC. In this paper, we use 

SNC as the basic approach to represent computations; we suppose that nodes of a cluster 

(lattice) are supplied with SN machines [34] to run programs drawn in the SN graphical 

language [31].  

The computation model is uploaded to the node’s SN machine for fast mass-parallel 

execution. Here we prefer using high-level loaded (colored) nets [16-17], where we 

manipulate by real numbers, supposing their implementation on low-level SNs studied in 

[34,35], where an alternative technique of solving PDE, reduced to diagonal linear systems, 

via the sweep method was presented for the case when the iterative approach is difficult to 

apply because of convergence issues.  

In [36], the basics of modeling computer networks by Colored Petri Nets (CPNs) [17] are 

studied. The model represents a combination of a bipartite directed graph and Milner's 

functional programming Markup Language (ML) [37], which expressions inscribe the graph 

elements; separate declarations of data types (color sets), variables, and functions are 

provided. A CPN token represents an element of abstract data type. Attributes of a place 

include its name, data type, and initial marking. Attributes of a transition contain its name, 

timed delay, guard function, and action procedure. Inscriptions of a transition incoming arc 

represent a pattern for selecting tokens, while inscriptions of a transition outgoing arc 

represent constructors of resulting tokens. The model offers certain flexibility using arc and 

node inscriptions. For instance, the incoming tokens can be selected with the incoming arc 
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inscriptions and the transition guard function; the outgoing tokens can be produced within the 

transition action procedure and within inscriptions of the transition outgoing arcs.  

The specification of the iteration scheme (8) by a loaded SN is shown in Fig. 3. For 

receiving values from the neighbors according to Moore’s neighborhood [21,23], we have 8 

ports whose names are specified in TEX-like notation; for example, "u_i-1,j+1" means 

        . For sending the current node value, we have 8 transitions ―send to‖, which actually 

forward the message to the communication lattice studied in Section 4. The message is 

delivered to a neighboring node having the same algorithm as specified in Fig. 3 with a 

specific index. The message content is represented by the current node value ―ij‖ 

corresponding to      though it could be supplemented with other useful information, for 

instance, the current error computed according to (9). Note that the error (accuracy) 

computation process supposes a kind of synchronization involving all the nodes of a lattice 

that can considerably affect the model performance. In some cases, a preliminary evaluation 

of the iteration number, based on a given accuracy, can be useful as a simple to implement 

halt condition. We consider, as a future research direction, an asynchronous approach of 

stopping the node program when its local accuracy in the corresponding mesh point value 

approximation has been achieved.  

 

 
Fig. 3. SN program for solving PDE (1) on a lattice with Moore’s neighborhood via finite difference 

scheme (8). 

 

Actually, computing nodes, shown in Fig. 3 are connected via a communication network 

specified with a lattice (11)-(12) or (18)-(19) studied in Section 4. Because of this reason, we 

provide input places (ports) to input information and transitions to transmit the node output in 

the form of the recomputed magnitude of the current node. Thus, we can compose an explicit 
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abstract lattice, connecting the sending transitions with the corresponding port places of the 

neighboring nodes. We use a rather modest number of declarations, which follow: 

colset RT= REAL timed; 

var ij,ij_new,im1j,ip1j,ijm1,ijp1,im1jm1,im1jp1,ip1jp1,ip1jm1: RT; 

The recalculation of the node magnitude according to (8) is represented by the action 

procedure of the transition iter, which specifies input and output values and the computation 

formula. If required, the formula can be represented completely in the SN graphical language 

as we expand it in the following sections. We use special notation for variables that extract 

tokens from neighboring nodes, omitting the function name and listing indices using 

character ―m‖ instead of a minus (subtraction) operation and character ―p‖ instead of a plus 

(addition) operation; thus, the value of "u_i-1,j+1" is extracted with the variable called 

im1jp1. 

For the completion condition observation, we are required to arrange the computation of 

error to evaluate its maximal value, which can be implemented in a similar way within a 

node. The completion condition test for all the nodes can be arranged using the consensus 

procedures studied in [39].  

 

4 General Purpose Communication Lattice Model with Moore’s Neighborhood 

We compose a communication lattice of general form for numerical solving of PDEs via the 

finite difference method. The lattice composition in the form of a square with the Moore 

neighborhood [21,23] allows us to map various finite difference stencils for fast mass-parallel 

solving of PDEs.  

In this section, models are represented in the form of an Infinite Petri net (IPN) [14,15]. 

Infinite Petri nets have been introduced and studied [14,15,19] for modeling complex 

networking protocols. For finite specification of IPNs, parametric multiset rewriting systems 

[39] are used. For IPNs analysis, we compose and solve infinite systems of linear 

Diophantine equations [40].   

4.1 Model of communication device with cut-through switching mode  

The device model for cut-through switching mode is shown in Fig. 4 in the form of a Petri 

net; the device ports are situated on the sides and corners of a unit-size square model. Ports 

are enumerated in two ways: ports 1-4 are clockwise starting from the upper port as sides of a 

square; port 5 is on the left upper corner of the square; port 6 is on the right upper corner; port 

7 is on the right down corner; and port 8 is on the left down corner. The model contains eight 

ports with respect to Moore’s neighborhood [21,23]; each port is subdivided into the input 

and output channels (tracts). For the packet transmitting, the simple switching rules [41] are 

applied: 

– a packet is received by an input port of the switching node;  

– as the next hop forwarding destination, a random output port, among seven output ports 

(except the current input port), is chosen; 

– the cut-through switching procedure forwards the packet to the output port directly 

without buffering. 
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Fig. 4. Model of 8-ports communication device with cut-through switching. 

An expression (10) represents a parametric description of the eight-port communication 

device model shown in Fig. 4. We use two parameters: the port number to which the packet is 

switched, denoted by the letter v; the port numbers of a device u. The parametric expression 

(10) contains only one line, which describes all transitions of the switch model, the input and 

the output tracts of all ports. Also, we use conventions [14,15] within the model notations, 

where the letter ―t‖ denotes a transition and the letter ―p‖ specifies a place. Transition       

implements the packet forwarding decision, directly moving a packet from the current source 

port u to the destination output port v.   

)8,1),,8,1),,,:((( ,  uuvvpopilpolpiti vuvuvu  (10) 

The letters ―i‖ and ―o‖ denote input and output tracts of the model. Place     specifies the 

input port buffer of a unit size and place       specifies the input port buffer size limitation 

having one token. Places     and      specify the output port buffer and limitation of its 

size, measured in the number of packets, respectively.  

Table 1 evaluates the model size of a switching device with the cut-through switching 

procedure measured in the number of places, transitions, and arcs. 
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Table 1. The switching device model size. 

Number of places Number of transitions  Number of arcs 

(2+2)·8= 7·8= (2+2)·7·8= 

32 56 224 

We use magnitudes from Table 1 in subsection 4.2 for the calculation of the total number of 

places, transitions, and arcs within the square lattice model having an arbitrary size k. 

4.2 Specification of an open lattice with cut-through switching nodes  

We use a direct parametric expression (11) of the device model with cut-through switching 

mode for the composition of an open communication lattice model [14] with an arbitrary size 

k in the form of an IPN. An open communication lattice means that there are no terminal 

(customer) devices, which are attached to the lattice border ports; otherwise, we call it a 

closed communication lattice. The specification of an open square lattice model with regular 

structure is given by (11) and (12). 
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  )       )  

      
     

 ) (11) 

We added upper indexes (i, j) to the parametric description of the communication device 

model (10) with Moore’s neighborhood, where index i is the row number and index j is the 

column number of a device within the lattice. The expression (11) specifies all nodes of a 

square lattice of size k×k while the expression (12) specifies all connections between the 

lattice nodes. 

We consider separately eight types of connections between nodes within the lattice, in 

accordance with Moore’s neighborhood, represented by eight corresponding lines of the 

parametric expression (11). Lines 1 and 5 describe horizontal connections; lines 2 and 6 

describe vertical connections; lines 3 and 7 describe the main diagonal connections, and lines 

4 and 8 describe the secondary diagonal connections.   
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(12) 

In Fig. 5, we show an example of an open 2×2 square lattice model with dedicated channels, 

represented by transitions connecting nodes, and cut-through switching nodes. 
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Fig. 5. Model of 2×2 open lattice with cut-through nodes with Moore’s neighborhood and dedicated 

channels. 

Table 2 specifies the model size of a square switching lattice of size k using the cut-through 

nodes with Moore’s neighborhood and dedicated channels, measured in the number of places, 

transitions, and arcs. 

Table 2. The open switching square lattice size. 

Number of places Number of transitions  Number of arcs 

 56·k² + 2·2·k·(k-1) + 2·2· (k-1)
2
= 224·k² + 16·(2k-1)·(k-1)= 

32·k² 64·k² - 12·k + 4 256·k² - 48·k + 16 

We use magnitudes from Table 2 in subsection 4.3 for the comparisons with the number of 

places in the obtained p-invariants [30]. Model-checking techniques also enumerate the Petri 

net model elements within the square lattice.  
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4.3 Analysis of an open lattice with cut-through switching nodes  

We use the parametric expressions (11), (12), represented in the direct form of the lattice 

model, similar to those studied in [10], for the analysis of model properties. For the 

calculation of open square lattice p-invariants [30], we compose, on (11) and (12), an infinite 

system of linear Diophantine algebraic equations (13); the system is represented in the 

parametric form with the parameter k having an infinite countable range.  
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We calculate p-invariants of the IPN model (11), (12), and solve system (13) in the 

parametric form to find such properties as conservativeness and boundedness [30] for a given 

structure of any size. We obtain the parametric solution (14) of system (13) for the open 

square lattice with cut-through nodes, Moore’s neighborhood, and dedicated channels given 

by (11) and (12). 
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We derived formulae to evaluate the number of obtained place invariants for specific 

values of k, which are gathered in Table 3.  

Table 3. Number of basis invariants. 

Invariant Lines Components  

Invariant 1 8·k² 2 

Invariant 2 8·k² 2 
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Invariant 3 1 16·k² 

Invariant 4 1 16·k² 

The total number of place invariants within a square lattice of size k with cut-through nodes, 

Moore’s neighborhood, and dedicated channels is  

N1=16·k² + 2. (15) 

Each of the model places, totally 2·8·k² + 2·8·k² = 32·k² places, enters the sum of the first 

and the second lines of (14) with a positive coefficient. Also, each of the model places, totally 

16·k² + 16·k² = 32·k² places according to Table 3, enters the sum of the third and fourth lines 

of (14) that proves p-invariance [30] of the model. As a collateral result, we evaluated in an 

alternative way the total number of the model places equal to 32·k², the same as in Table 2.  

4.4 Model composition of square lattice with combined cut-through and store-and-

forward switching device and Moore’s neighborhood 

The model of an eight-port switching device with a combined switching mode of cut-through 

and store-and-forward procedures in the IPN form is shown in Fig. 6, ports are enumerated in 

the same way as for the cut-through model (Fig. 4). There are eight ports in the model; each 

port contains input and output channels. An internal buffer is described by eight buffer 

sections, one per port, respectively, and a buffer size limit. An example of a device model, 

shown in Fig. 6, contains five packets (tokens) in the port 5 buffer section, for a total of 55 

packets in the switching node, and the available buffer size equal to 50. The following list of 

rules specifies the combined switching mode [41]: 

– a packet is received by an input port of the switching node;  

– as the next hop forwarding destination, a random output port, among seven output ports 

(excepts the current input port), is chosen; 

– if the chosen output port is free, then the cut-through switching procedure forwards the 

packet to the output port directly without buffering;  

– if the chosen output port is busy, then the store-and-forward switching procedure stores 

the packet in the internal buffer of node, namely in its section corresponding to the chosen 

output port;  

– when an output port channel becomes free, the packet is forwarded to it from the 

corresponding section of the internal buffer in case the section is not empty.  
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Fig. 6. A switching device model with Moore’s neighborhood and combined cut-through and store-

and-forward modes of switching. 

We construct a direct parametric expression (16) of the device model shown in Fig. 6 to 

specify the device model in the PN form, which has four rows. Transitions of all input port 

tracts, having index v as a number of the next output port for the packet forwarding, are 

specified by the first three rows of (16). Transitions of all output port tracts, having index u as 

a number of the current port, are specified by the fourth row of (16). Remind that the letter 

―t‖ corresponds to a transition, the letter ―p‖ corresponds to a place, and the letter ―b‖ 

corresponds to a buffer. 

(

  
 

(

 
 (

               

                          
                                 

)           

                     )

 
 

      

)

  
 

 (16) 

We use parametric expression (16), which represents the device model shown in Fig. 6 to 

compose a square communication lattice model in the form of IPN. Note that we specify 

regular structures only, for instance represented by a lattice. 

We add letters, which correspond to the rules of switching, to the names of places and 

transitions of the device model. The letter ―f‖ stands for packet forwarding: 
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      – a decision on the packet forwarding from the current port u to the output port v; 

      – the indicator of forwarding. 

The letter ―c‖ denoted the cut-through switching mode: 

      – a direct packet forwarding from the input port to the output port;  

      – store a packet within the corresponding section of the internal buffer. 

The letter ―i‖ denotes an input tract of the device port; the letter ―o‖ specifies an output 

tract of the device port. For example, a transition     outputs a packet from the section u of 

the internal buffer to the corresponding port.  

The input port buffer and the limitation of input port buffer size (a unit) are specified by 

places      and      , respectively, while the output port buffer and the limitation of output 

port buffer size (a unit) are specified by places     (  
 
) and       (    ), respectively. The 

internal buffer section of the port with index v is denoted as     and the device buffer 

limitation is specified by the place     marking. The numbers of tokens in all places     and 

place     are complementary, with their invariant equal to the internal buffer size. 

Transition        has a read arc directed from the destination port buffer    ; here the read 

arc is an abbreviation of a loop created by a pair of arcs having counter directions, connecting 

place     and transition       . We represent the lower priority of buffering compared to cut-

through forwarding via the read arc. Only in the case when the destination port is busy, the 

buffering is implemented. The choice between transmitting the arrived packet or a packet 

from the buffer is implemented in a nondeterministic way when there are packets within a 

certain section of the internal buffer and an input packet forwarded to the same port. It seems 

to be the best simple solution that does not lead to sophisticated models. The solution is also 

justified by real-life procedures in case we do not model priority classes of packets.  

We calculated the number of places, transitions, and arcs within the combined switching 

device model and represented them with Table 4.  

Table 4. Number of places, transitions, and arcs within the combined switching device model. 

Number of places Number of transitions  Number of arcs 

(7+4)·8+9= (7+7+7+1)·8= (7+7+2·7+3·7+4·7+4)·8= 

97 176 648 

Evaluations from Table 4 are applied in sequel for computing the corresponding numbers for 

the square lattice model.  

4.5 Specification of an open lattice with combined switching mode 

In Fig. 7, a visual representation of an open lattice model of size 3×3 with a combined cut-

through and store-and-forward switching device is shown. 
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Fig. 7. A model of 3×3 open square lattice with combined switching node. 

We compose an open square communication lattice of size k based on the direct parametric 

expression (16) of the device model shown in Fig. 6. Indexes (i, j) have been added to the 

parametric description of the eight-port communication device model (16) to obtain the 

lattice specification (17), where index i is the row number and index j is the column number 

of the device within the lattice. 
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All nodes of the k×k lattice are described by the specification (17), while all connections 

between nodes of the lattice are described by the specification (12) similar to the lattice with 
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the cut-through communication node. Based on the composition rules, the specification of an 

open lattice model with a combined switching node is represented by expressions (18),(19); 

here we repeated the formulae for the convenience of subsequent composition of a linear 

equation system. 
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Formulae to compute the number of places, transitions, and arcs within the open square 

lattice model with Moore’s neighborhood and combined switching node are gathered in Table 

5. 

Table 5. Number of places, transitions, and arcs within the open lattice with a combined node. 

Number of places Number of transitions  Quantity of arcs 

 176·k
2
+4·k·(k-1)+ 4·(k-1)

2
= 648·k

2
+16·(2k-1)·(k-1)= 

97·k
2
 184·k² - 12·k +4 680·k² - 48·k +16 

The evaluated numbers of vertices and arcs have been indirectly confirmed by the modeling 

system Tina for a series of finite sizes represented by the values of parameter k.  

4.6 Resolving infinite linear system for place invariants in parametric form 

For the calculation of p-invariants of the open lattice (18), (19), we composed an infinite 

system of linear Diophantine algebraic equations (20), (21) in parametric form. 
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The following parametric solution (22) of system (20), (21) was obtained for the open 

communication square lattice of size k (18) having a combined switching node: 
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Table 6 contains the calculated numbers of basis invariants of various types specified with 

formulae. 

Table 6. Number of basis invariants in parametric sparse matrix (22). 

Invariant Number of lines Components  

Invariant 1 8·k² 2 

Invariant 2 k² 9 

Invariant 3 8·k² 9 

Invariant 4 1 17·k² 

Invariant 5 1 80·k² 
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We conclude that the total number of p-invariants in a lattice with a combined switching node 

of size k is  

 N2=17·k² + 2. (23) 

All the places, 2·8·k² + 9·k² + 9·8·k² = 97·k², are contained as natural components of the 

sum of the first, second, and third lines of (22). Also, all the places, 17·k² + 80·k² = 97·k², are 

contained as natural components of the sum of the fifth and fourth lines of (22) according to 

Table 6. Consequently, the number of places in the open square lattice model with a 

combined node of size k is 97·k² according to Tables 5 and 6.   

4.7 Proof of the model properties  

In this section, we prove the conservativeness and boundedness [30] of the square lattice 

model with a cut-through switching node and Moore’s neighborhood represented as an 

infinite Petri net. We prove that the Petri net is p-invariant and has the properties of 

conservativeness and boundedness for an arbitrary integer k when each line of the sparse 

matrix (14) is a solution of system (13).   

 

Lemma 1. Each line of the sparse matrix (14) is a solution of the sparse linear system of 

Diophantine equations (13). 

Proof. We substitute each parametric line of the parametric solution (14) into the each 

parametric equality of the equation system (13). Various values of indices are selected when 

substituting; as a result, the correct statement is obtained. For instance, when we substitute 

the second line of the parametric solution (14) 

(   
   
     

   
)                  ,  

into the first equation of the system (13) 

((((     
   

      
   

      
   

     
   

      
   

  ) 
      

   
  )       )  

      
     

 ) 

we obtain the following equalities:  

for i′ ≠ i  or  j′ ≠ j: 0 + 0 – 0 – 0 = 0, we obtain 0 = 0; 

for i′ = i  or  j′ = j: 0 + 1 – 1 – 0 = 0, we obtain 0 = 0. 

We check all other combinations in the same way.    

 
Theorem 1. The lattice model (11), (12) is a p-invariant Petri net for an arbitrary size given 

by natural number k. 

Proof. Let us calculate the sum of the first and the second lines of (14); it contains all the 

places once, 2·8·k² + 2·8·k² = 32·k²; and the sum of the third and fourth lines of (15) contains 

all the places once, 16·k² + 16·k² = 32·k², that coincides with Table 3. The number of places 

in the open square lattice model of size k is 32·k² which coincides with Table 2. These lines 

are solutions of system (13) according to Lemma 1. 

 
Thus, we calculated place invariants [30] of infinite Petri nets [14,15] and analyzed 

properties [42] of an ideal communication protocol model based on the parametric 

expressions (11), (12), which specify the communication square lattice of any size k with 
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Moore’s neighborhoods [21,23] and cut-through switching node. In a similar way, we can 

prove properties of the model (18), (19) with a combined switching node.  

 

5 Specialized Computing Lattice Model Composition and Implementation on FPGA 

For the embedded application domain, we need a device numerically resolving a PDE, which 

specifies the control task model, in a few microseconds; for special applications, in a few 

nanoseconds, that is infeasible for microcontrollers. Here we implement the mass-parallel 

specifications, developed in Sections 3, 4 based on the iteration process of high accuracy 

given by formulae (8)-(9) in Section 2, in hardware, preserving the model parallelism to 

achieve the utmost performance required for control of fast real-time processes in manifold 

applications of physics, chemistry, and engineering. 

5.1 Specialized computing-communication lattice model  

For embedded applications [6], we develop a specialized integrated model of computation 

and communication in the form of a lattice with the number of nodes corresponding to the 

required accuracy of the finite difference method. The iteration technique allows us to 

simplify the node function considerably, and the application of the synchronous 

communication scheme reduces the communication subsystem complexity. In this section, 

we prototype the mass-parallel hardware in FPGA [11], generating Verilog [12] code on the 

lattice abstract specification. For special applications, dedicated integrated circuits can be 

designed.  

The present subsection focuses on composing models for subsequent hardware 

implementation, while the next subsection presents techniques for Verilog code generation. 

We start by specializing the model of Section 3, shown in Fig. 3, to adjust it for a direct 

synchronous connection of nodes employing the minimal number of the target device time 

cycles for the iteration implementation. In Fig. 8, we represent the model, drawn in Fig. 3, in 

a reduced form, transmitting the node value after its recalculation directly to the node 

neighbors, according to Moore’s neighborhood [21,23], for the next iteration.  
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Fig. 8. CPN model of a node for further composition of lattice via merging places of neighboring 

nodes. 

 

We use the node model shown in Fig. 8 for the lattice composition via collecting models of 

indexed nodes and merging places having the same name. Formal specification of the lattice 

composition via merging (uniting) contact places of components is studied in [18,43]. In Fig. 

9, we provide an example of the     lattice, supposing constant border conditions given by 

the initial marking. It means that the border conditions do not change during the iteration 

process, though they can be different as defined by the corresponding border condition 

functions for different border nodes. Since the rectangle perimeter represents the constant 

border conditions, we have an internal grid of     nodes containing transitions, which 

implement the iteration process. For brevity and vividness of graphical representation, we 

omit the transition actions that are the same (as shown in Fig. 8) and can be specified by the 

corresponding function similar to IP network address extraction [36].  
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Fig. 9. A 5x5 lattice CPN model with     internal nodes; the model specifies the computation and 

synchronous communication to recalculate all the nodes of a finite difference approximation in one 

time cycle. 

 

For real-life numerical solving of PDEs, big lattices are employed. To specify such lattices, 

we offer two basic approaches. The first approach supposes developing special software for 

generating big models similar to the previously developed generators for various types of 

communication lattices [15]. A generator accepts, as an input parameter, the grid size, 

possibly, the number of dimensions for multidimensional lattices, neighborhood 

specification, and the iteration formula together with the border conditions formulae. The 

generator output represents the lattice specification according to the chosen modeling system, 

either in a graphical form or an abstract form without graphical binding, more appropriate for 

multidimensional lattices that are difficult to visualize. The result of generator work 

u00

RT

u10

RT

u01

RT

u11

RT

u20

RT

u21

RT

u31

RT

u30

RT

u41

RT

u40

RT

u02

RT

u12

RT

u22

RT

u32

RT

u42

RT

u03

RT

u13

RT

u23

RT

u33

RT

u43

RT

u04

RT

u14

RT

u24

RT

u34

RT

u44

RT

i13 i23 i33

i12 i22 i32

i11 i21 i31

im1jm1 ijm1

im1jm1

ijm1 ijm1

im1jm1

ip1jm1 ip1jm1

ip1jm1

im1jm1

im1jm1

im1jm1

ijp1 ijp1 ijp1

ijp1 ijp1 ijp1

ijp1 ijp1 ijp1

ijm1

ijm1 ijm1 ijm1

ijm1
ijm1

im1jm1

im1jm1 im1jm1

ip1jm1
ip1jm1

ip1jm1

im1jm1

im1jm1

im1j

im1jp1
ijp1

ip1jp1

ip1j

im1j

im1jp1
ijp1

ip1jp1

ip1j

im1j

im1jp1 ijp1

ip1jp1

ip1j

im1j

im1jp1 ijp1

ip1jp1

ip1j

im1j

im1jp1 ijp1

ip1jp1

ip1j

im1j

im1jp1 ijp1

ip1jp1

ip1j

im1j

im1jp1
ijp1

ip1jp1

ip1j

ip1jm1

im1j

im1jp1
ijp1

ip1jp1

ip1j

im1j

im1jp1
ijp1

ip1jp1

ip1j



25 

represents the technological specifications for hardware implementation of a specialized 

computer for solving a given PDE using a given finite difference scheme via the iteration 

process.  

The second approach bears a more abstract and descriptive character suitable for both 

direct implementation on computing clusters and synthesizing dedicated hardware. We call it 

a reenterable model [18], where each component is represented in a single copy, tokens are 

supplied with a topological tag, and movements, with respect to real-life topology, are 

modeled by the process of tag switching. The reenterable model shown in Fig. 10 is the same 

for a lattice of any size; only the marking changes based on a given size. For 

multidimensional lattices, the number of dimensions can also be specified with a parameter. 

Note that this kind of model looks more suitable for the butterfly topology of HPC 

interconnects provided by Infiniband switches such as Slingshot [27] because they do not 

depend directly on a specific mesh of physical connections. 

 

Fig. 10. Reenterable model of a lattice of any size; values are supplied with the lattice coordinate tags, 

transition iter represents recalculation of all the nodes values. 

 

A reenterable model represents a rather high level of abstraction, especially when 

multidimensional lattices are specified [15,20] convenient for the description purposes, 

though it requires optimization for its efficient implementation. The optimization facilities are 

not provided within CPN Tools [17]. In Fig. 10, the function values at the current iteration 

are stored within a single place “u_ij”, recalculation of all the node values is implemented 

via a single transition iter. The following declarations are employed: 

val ni=10; val nj=10; 

u_ij

uij

1`{t={i=5,j=5},u=1.0}++
1`{t={i=5,j=4},u=1.0}++
1`{t={i=5,j=6},u=1.0}++
1`{t={i=4,j=5},u=1.0}++
1`{t={i=6,j=5},u=1.0}++
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1`{t={i=4,j=6},u=1.0}++
1`{t={i=6,j=6},u=1.0}++
1`{t={i=6,j=4},u=1.0}

iter
@+1

[#i (#t ij)>0 andalso #i (#t ij)<ni andalso  #j (#t ij)>0 andalso  #j (#t ij)<nj andalso
 #i (#t im1j)=(#i (#t ij)-1) andalso #j (#t im1j)=(#j (#t ij)) andalso 
 #i (#t ip1j)=(#i (#t ij)+1) andalso #j (#t ip1j)=(#j (#t ij)) andalso
 #i (#t ijm1)=(#i (#t ij)) andalso #j (#t ijm1)=(#j (#t ij)-1) andalso
 #i (#t ijp1)=(#i (#t ij)) andalso #j (#t ijp1)=(#j (#t ij)+1) andalso
 #i (#t im1jm1)=(#i (#t ij)-1) andalso #j (#t im1jm1)=(#j (#t ij)-1) andalso
 #i (#t im1jp1)=(#i (#t ij)-1) andalso #j (#t im1jp1)=(#j (#t ij)+1) andalso
 #i (#t ip1jp1)=(#i (#t ij)+1) andalso #j (#t ip1jp1)=(#j (#t ij)+1) andalso
 #i (#t ip1jm1)=(#i (#t ij)+1) andalso #j (#t ip1jm1)=(#j (#t ij)-1)
 ]
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({t=(#t ij),u=(4.0*((#u im1j)+(#u ip1j)+(#u ijm1)+(#u ijp1))+((#u im1jm1)+(#u im1jp1)+(#u ip1jp1)+(#u ip1jm1)))/20.0});
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im1jp1

ip1jp1

ip1jm1

9

1`{t={i=4,j=4},u=1.0}@0+++
1`{t={i=4,j=5},u=1.0}@0+++
1`{t={i=4,j=6},u=1.0}@0+++
1`{t={i=5,j=4},u=1.0}@0+++
1`{t={i=5,j=5},u=1.0}@0+++
1`{t={i=5,j=6},u=1.0}@0+++
1`{t={i=6,j=4},u=1.0}@0+++
1`{t={i=6,j=5},u=1.0}@0+++
1`{t={i=6,j=6},u=1.0}@0
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colset ri=int with 0..ni; colset rj=int with 0..nj; 

colset tag=record i:ri * j:rj; 

colset uij=record t:tag * u:REAL timed; 

var ij,im1j,ip1j,ijm1,ijp1,im1jm1,im1jp1,ip1jp1,ip1jm1,new_ij: uij; 

Predefined constants (values) ni and nj specify the lattice size, data types ri and rj specify 

the coordinate ranges that can be employed in generators of initial marking using ri.all() and 

rj.all() constructs. The data type tag specifies the coordinates of a node while uij defines the 

node value.  

In Fig. 10, the complex guard function of transition iter selects values of 9 neighboring 

nodes via the set of variables ij,ip1j,ijm1,ijp1,im1jm1,im1jp1,ip1jp1,ip1jm1,im1j satisfying 

the specified condition on their indices according to Moore’s neighborhood [21]; it also 

selects as ij an internal node only. Based on these values, the action of transition iter 

calculates a new value of the current node according to the formula (8) and assigns it to the 

variable new_ij to replace a token extracted by variable ij. The inscription of the outgoing arc 

excludes the border condition recalculation.  

5.2 Synthesis of Specialized Lattices on FPGA  

For the most significant tasks of real-time embedded control, we develop a specialized model 

of computations that is implemented in a semi-hardware form using FPGA [11,44], where 

generated Verilog [12] code defines the specialized hardware. We follow a traditional for 

embedded applications [6] way of approximating real numbers as fixed-point numbers or, in 

even more simplified form, as integer numbers, supposing an initial scaling of numbers with 

respect to the working range and required accuracy of the function approximation. For this 

purpose, a UNIT_VALUE is selected; for instance, if a unit equals 0.001, then all the values 

are expressed with respect to the chosen unit. For using unsigned numbers, the corresponding 

shift of values is applied; for instance, having a range from -10 to 10 and the above unit, we 

implement a shift by 10, having a working range of values from 0 to 20000.  

Formal issues of convergence for nonnegative integer approximation require further 

investigation, and with such an approximation, we can directly apply conventional Petri and 

Sleptsov nets, which are easy for hardware implementation. Note that there is an intrinsic 

connection of cellular automata (CA) [22] with the iteration technique, especially when 

approximated with nonnegative integer numbers. Indeed, the node value, together with a 

given neighborhood and iteration formula, represents the CA rule [21]. Thus, we can apply 

CA theory [21] to study the convergence issues [2]. An unchanged CA configuration directly 

represents convergence, though some cycles of configurations with low differences in the 

node values are possible to achieve as well. 

In Fig. 11, we present two different approaches to modeling the iteration processes by SNs; 

the first approach (Fig. 11a) is fast and rough, though it yields simpler constructs; the second 

approach (Fig. 11b) is more precise, though it runs three times slower and contains more 

graphical elements. The node model represents a clan (functional subnet) assuming 

applicability of the clan composition technique [36,45] for the model properties analysis.  
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(a) one time cycle per iteration; (b) three time cycles per iteration. 

Fig. 11. Node model for integer number approximation lattice for embedded systems design. 

Both nodes of Fig. 11 implement the iteration formula (8), the node shown in Fig. 11b 

implements it directly, while the node shown in Fig. 11a implements it with transformations 

(24) as a sum of 8 addendums in the third line; an intermediate variant is possible 

corresponding to the second line and requiring two time cycles.  
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(24) 

For the node shown in Fig. 11a, a     lattice is composed in Fig. 12. It runs one iteration 

in one time cycle for the entire matrix of values for the synchronous implementation of SN 

(Sleptsov-Salwicki rule [32]). The lattice design is based on the transformations of formula 

(8) represented with (24). 

Each of eight addendums is implemented by a separate transition of a neighboring node in 

Fig. 11a; separating division operations affects the accuracy of computations, though it leads 

to a one-time-cycle implementation with enhanced performance. Actually, a transition 

divides the node value by 5 or 20 and adds the obtained values to the neighboring nodes; the 

division is implemented using the corresponding weight of the transition incoming arc, while 

the addition is implemented implicitly with a few incoming arcs of the corresponding place. 

As it happens, the boundary nodes are not recalculated, while each internal node place has 8 

incoming arcs bringing the corresponding addendums of the final expression in the 

transformations (24).  

If this fastest scheme is not suitable from the error of the integer division point of view, a 

three-time cycle implementation strictly following formula (8) will be the best choice for 
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nonnegative integer approximation. The corresponding node model to compose a lattice is 

represented in Fig. 11b. For verification of SN programs, we apply system Tina [46] which 

recently implements SNs and represents an IDE [34] for our novel SNC paradigm of 

computations [13,47]. 

 

 
Fig. 12. An integer number approximation lattice solving PDE for embedded systems design with a 

node shown in Fig. 11a. 

The composed SN model represents the lattice specification for further implementation of 

the approach [48] to compile an SN into Verilog code [11] for its subsequent implementation 

on FPGA [12]. We employ either direct mapping of the lattice into explicit Verilog 

statements or use loops as a template with respect to the lattice size parameter N. The 
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corresponding code snippet is shown in Fig. 13. On the growing edge of the clock signal, we 

recalculate the entire lattice for K iterations and then indicate with the built-in LED array the 

result for an internal node. We run a single iteration during a time cycle; the subsequent 

Verilog code fine-tuning supposes adjusting the iteration time with the device clock with the 

purpose to run the maximal possible number of iterations during a single time cycle. Since 

the conventional division of integer numbers just omits the fractional part, we need to provide 

a correction for better rounding. Because of this reason, we compare the division reminder 

num%20 with a given constant ROUND_EDGE to add an extra unit. As a result of fine-

tuning, we can recommend using the constant ROUND_EDGE values from 10 to 12.  

 

always @(posedge sys_clk) begin 

     if (counter < `K ) begin 

        for(i = 1; i < `N-1; i = i+1) begin // iterate 

          for(j = 1; j < `N-1; j = j+1) begin  

            cross=u[i+1][j]+u[i-1][j]+u[i][j+1]+u[i][j-1]; 

            diag=u[i+1][j+1]+u[i+1][j-1]+u[i-1][j+1]+u[i-1][j-1]; 

            num=4*cross+diag; 

            u1[i][j] = num/20+((num%ROUND_EDGE)<11)?0:1; 

          end 

        end 

        for(i = 1; i < `N-1; i = i+1) begin // u=u1; 

          for(j = 1; j < `N-1; j = j+1) begin  

            u[i][j] = u1[i][j]; 

          end 

        end 

       

     end          

     else 

       led = ~ u[2][2][5:0];   

     end 

Fig. 13. Listing of Verilog code snippet of the iteration (8) hardware implementation. 

 

An adjusted constant number of iterations, for a certain range of considered magnitudes, 

represents a good compromise with respect to the limited resources of embedded 

applications. A layout of a node, obtained as a result of Verilog code processing, is shown in 

Fig. 14; here we use neighboring node values according to the names specified in Figs. 8 – 

11; it just describes the data flow of formula (8) with a 16-bit unsigned integer 

approximation.   
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Fig. 14. Layout of a node obtained on Verilog code (automatic). 

We tested the node (Fig. 14) and composed a lattice for N=5 that recalculates the value of 

its internal part represented by a     lattice using the perimeter nodes as constant boundary 

conditions. The lattice layout is shown in Fig. 15 and represents the connection of 9 nodes. 

Here we do not rearrange the automatically obtained layout, though when optimizing it for 

production, the lattice structure will be imposed, providing the minimal wire (connections) 

length and the minimal number of intersections to trace on additional layers. 

 
Fig. 15. Layout of 5x5 lattice with constant values on borders (automatic). 
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5.3 Some benchmarks for FPGA implementation 

For preliminary benchmarks, we were using the Tang Nano 9k FPGA operated by Gowin 

FPGA Designer [48]. Dependence of the solution time on the lattice size for required 

precision is shown in Fig. 16. For the 50 MHz FPGA clock, we run an iteration in about 

20 ns; thus, we calculate about K=50 iterations in 1 us that provides a rather good 

approximation of the optimal control specified by PDE (a system of PDEs). Benchmarks 

obtained for the specified FPGA completely correspond to simplified evaluations by 

multiplying the number of iterations by the device’s basic time cycle. Modern advanced 

FPGAs work on frequencies higher that 1 GHz, which allows us to run K=1000 iterations in 

1 us or to have a nanosecond reaction with fewer numbers of iterations.  

One could think that the chosen number of steps within figures     (           ) 

serves for illustrative purposes only, though we will show that it provides rather good 

approximation as well. Having a step h=1/4=0.25, the scheme (8)-(9) provides the accuracy 

of approximation                 , using the same value in formula (9), that requires 

about 20 iterations to run. Tang Nano 9k FPGA, having a modest cost of some ten pounds, 

can handle a mesh of     , that provides a theoretical accuracy of computations of about 

0.0001.  

  
a) real numbers; b) integer approximation on FPGA. 

Fig. 16. Dependence of the solution time (number of iterations) on the actual 

accuracy of approximation. 

For computations represented with Fig. 16, we were using fine-tuning which includes, for 

the embedded implementation, adjusting the following set of parameters: N, UNIT_VALUE, 

K, ROUND_EDGE. We reach the required accuracy by increasing N and decreasing 

UNIT_VALUE that requires increasing K to achieve theoretical accuracy, though because of 

rounding error accumulation, it shifts the result with respect to the precise solution that is 

adjusted by the appropriate ROUND_EDGE choice.  

As for the discussion of the presented approach prospects, we would like to note that in the 

present paper, we consider (for the case study) constant boundary conditions and, as a goal, 

the convergence to an unmovable or pulsing with low error configuration of the nonnegative 

integer approximation (a cellular automaton). For real-life embedded applications, extended 

systems are of certain interest where sensors are attached in the form of changing border 

conditions, and the goal values for optimal control are taken from certain specified locations 

of the lattice. In this case, we are not interested in halting the computing-communication 

structure but keeping it running and processing possible updates of sensors. For control 

systems that change time scale and have prolonged idling periods, switching to energy-saving 
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modes of functioning is possible when achieving good convergence to awake on a change of 

sensor inputs.  

6 Conclusions 

In this paper, we have applied infinite Sleptsov (generalized Petri) nets for computing-

communication structure design aimed at fast mass-parallel numerical solving of practically 

significant problems specified by PDE or systems of PDE. The application domain includes 

big-scale simulations as a part of computer-aided design on general-purpose HPC 

architecture (supercomputers) and embedded applications with specialized hardware 

prototyped with FPGA. We studied systems having definite spatial structure in the form of a 

multidimensional square lattice; two-dimensional examples have been chosen for the case 

study.    

We start with a given PDE or a system of PDEs and boundary conditions, then apply finite 

difference methods using a mesh of appropriate shape for its numerical solution with the 

required accuracy (error). We adjust the mesh to provide good convergence of the iterative 

solution process motivated by its ability for mass-parallel implementation. For an efficient 

solution, in an ideal case, the task spatial structure should be directly mapped into the 

corresponding computing-communication structure, which is possible for dedicated hardware 

implementation or its prototyping with FPGA for embedded control applications. For the 

HPC domain, we offer using general-purpose computing structures in the form of a 

multidimensional cube or torus with the corresponding topology of the communication 

subsystem. We focus on the connection mesh obtained using Moore’s [21] or generalized 

neighborhood [22] for considerably better approximation (as a fourth degree compared to the 

second degree depending on the finite difference mesh step size). 

 Infinite models of a square lattice with Moore’s neighborhood were constructed using the 

cut-through, store-and-forward, and combined switching and intermediate storage methods; 

infinite systems of linear algebraic equations were compiled and solved in parametric form; 

their invariance has been proven; properties of the model’s conservativeness and 

boundedness have been proved. A future direction of research is the investigation of square 

lattices [14,22] with generalized neighborhood [23] by infinite nets. 

Computing node SN programs have been designed to implement the iterative solution on 

the corresponding general-purpose computing-communication lattice. We presented a high-

level approach based on the colored nets using real numbers in the process of computations, 

easily adjustable to using complex numbers as well.  

For embedded applications, we considered the integer number approximation of the 

iteration technique that represents, in essence, a cellular automaton approach. The 

corresponding low-level specifications in the SN graphical language have been presented as 

an intermediate construct to generate Verilog code for dedicated hardware implementations 

or prototyping on FPGA. The corresponding FPGA implementation has been presented, 

benchmarks, and prospects of application for fast process control are discussed. It concerns 

plane and rocket engines, (thermo) nuclear power stations, the trajectory of hypersonic 

moving objects, etc.  
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